Formal Methods for Software Evolution
(BAA98-10)

Interoperability Results

Robert L. Constable
Cornell University

Outline

B Executive Summary

m Background

B The Vision

B Results

B Applications and detailed results

B Next steps

Common Goals

Substantially improve the software production process

B to accomplish more with software
M to increase reliability of software systems

B to expedite timely production at lower cost

B to manage orderly evolution

Computer Science Approach

Computer science is concerned with automation of
intellectual processes.

Formal Methods is the application of CS concepts and
methods to the semantics-based automation of
systems building.

Interoperability Program Goals

Inject formal methods throughout the software
development process
e open the process to analytical scrutiny, to technically
informed management and to automation
e support a culture conducive to high quality based on
scientific knowledge
e provide more capabilities
(concepts, tools, paradigms, vision)
Doing this will result in systems in which we have high

confidence, and it will lower the cost of building them

Problems

e practitioners are unfamiliar with formal methods
(e.g. foreign notation, "managers don't believe in proofs”)

e practitioners are unaware of the value of FM
(few “advertised adoptions”)

e no clear injection vector or entry points (even for a
modicum of formal methods)

e FM community aimed at total solution or late phase
applications

e lack of knowledge in machine useable form (formal
knowledge)

Problems continued

e can formally design, develop, and verify small function-
like code - can even synthesize from specifications
(scheduling, Grobner basis, protocols)

e but even for layers of simple functions we do not have
these capabilities
- old methods do not scale
- need new ideas for reactive and distributed systems

Results from Interoperability Project

e demonstrating interoperability among alternative
approaches to design, production and verification of
systems

e applying substantial computation to automate code
production (“spontaneous adoption”)

e creating interoperability mechanisms to build a shared
database of formal knowledge and cooperate in proving

Outline

B Summary

m Background

B The Vision

B Results

B Applications and detailed results

B Next steps

Background - economic issues

- reliable systems are “priceless”
- new capabilities open new markets

- we are steadily creating new capabilities

Background - strategic issues

- need a technical base for building large scale systems

- a technology of trust for high confidence systems

old state : hard to say anything about networks

current state : capable of proving some properties
of running protocols

need : design and build reliable networks

- automation of software production is an inherently open-
ended challenge worthy of sustained investment.

Outline

B The Vision
- What are we trying to accomplish? (goals)
- How will we change practice?
- How is it done now?

The Programming Methodology Ideal

Service specifications
natural
analytical
logical
formal properties

Abstract annotated code
guarantees
Invariants
properties

Production code

Machine code

Environments/Frameworks

Key subsystems
languages (logical/functional/imperative/interactive)
editors/parsers/interfaces
type checkers/provers
interpreters/evaluators
translators/compilers/optimizers/extractors (synthesizers)
model checkers/decision procedures
libraries/databases/version control

metacontrol/extenders

Environments/Frameworks

An organizing architecture
o closed systems vs open systems

e integrating mechanisms

Closed FM Environment Architecture

i

evaluator

editor
Library
defs
thms
code tactics
base cmts

prover

i

compiler

v

Typical Environment/Framework/Development System

Consider an open system to integrate all
key subsystems.

editor

editor editor

l

l

l

evaluator

evaluator

Library

defs
thms
tact

defs
thms
tact

defs
thms
tact

\

/

\

Meta/control
(refiner)

prover

prover

prover

i

1

translator

v

translator

v

Software Support for Programming

This is the backdrop for Interoperability results

Logical Programming Environments (LPE) - Cornell

Designware/Specware - Kestrel
Reflective Frameworks - SRI/Stanford
Verinet - U Penn

Haskell, Meta-ML, and extended type
systems - OGI

Outline

B Results
- What have we done to advance our goals?
- What is new in our approach?

- How have we overcome old limitations?

Results Summary - Richer Languages

Specware
- already very expressive
- Slang adds dependent types
- MetaSlang is ML-like prog language
also uses reflection

PVS - subset dependent types

Nuprl/MetaPRL
- intersection types, very dependent types
- class theory (large types or categories), formal modules

Maude- reflection

Why do richer languages matter?

- basis of understanding and integration
- support higher level abstractions
- connection to natural specifications is easier

- greater leverage of most effective techniques
- rewriting — extremely general
- tactics — extremely general

Results Summary - From monolithic to integrated systems

Kestrel

MetaSlang and cooperative proving

Gandalf
HOL
PVS
SETHEO
SNARK
SPASS

Slang Using MetaSlang

Stanford/SRI

analysis

SAL i > verification

abstraction

Results Summary

Full Maude

ITP

Church-Rosser Checker

OCC Maude as formal tool
CSP

CAPSL

HOL - Nuprl

Where: OCC stands for Open Calculus of Constructions
ITP stands for Inductive Theorem Prover

Results Summary — more integration

SRI/Cornell
HOL - Nuprl proof translation

Cornell/Bell Labs

HOL/Nuprl/PVS link
“supernova” proof method

UPenn
HOL/SPIN link

Results Summary

advances in base technology

Maude rewrite engine — speed

MetaPRL distributed tactic prover — speed

Outline

B Applications
- If successful what difference will it make?

- What are current successes?

Applications

Kestrel Specware

Cornell

SRI/Stanford

Upenn

Boeing : formal spec into CAD design
with OGI : specs for processors

Ensemble/Nuprl
reconfiguration/compression
Nortel Networks

verification
BBN
NASA

with Penn, active networks protocols
CAPSL for security protocols

Verinet
- RIP and AODV

Outline

B Ensemble / Nuprl fastpath
- Ensemble Architecture
- Compressing stacks

- Verification of stacks

Group Communication Systems

Reliable and secure networking in safety-critical applications

Technology for securing networked applications
- widely used: NY Stock Exchange, French Air Traffic Control ...

Added flexibility through protocol stacking
- reconfigurable to specific needs of applications

Reference implementation in Ocaml

- small protocol layers, easy to check and modify

- portable to a variety of platforms

- highest performance due to fast-track reconfiguration

Ensemble

Logical development tools for network security
Ensemble/Nuprl @ - verification of critical properties (beyond type checking)
- formal documentation / logical debugging

- automated and verified fast-track reconfiguration

Architecture of Ensemble

SENDER

LAYER
[o

LAYER
[o

LAYER

[o
LAYER
[o
BOTTOM LAYER

Protocol Stack

]) (g) |
N

-l I

Event M\e’s&age

...........

FIFO Queues

Cost of modularity

B Poor performance
- redundant code

- abstraction enforcement

m Difficult to verify complete systems

- combinatorial number of
configurations

Configurations

[Application] [Application]

Ensemble Implementation

[Application]

A

.

A 4

0

GMP

v 4

SYNC

v 1

HEAL

v 1

MIG

|8

?

>

|

TRANS

i

Virtual
synchrony

23 layers

W Layered protocol stacks
m Each layer implements a property

m Protocols are
- small (-300 lines ML)
- roughly orthogonal

m Configuration is application-specific

m About 50 layers; thousands of
protocols

Fast path

Application
Common (Case
P’ - P’ Predicate
Extract common path
from the protocol
\
Speedups of x2-x50 X VS
S
T FIF
P
A STB
T
H SUM

Verification - How do we bridge the gap?

: token Total]
: cons
Tl . View |
_FIFO . MsgView |
~ frag |
_stable FIFO |

process group

Software Development by Refinement

semantics; SPECop - CAT
category of
- Speg, denotes . C— > modelsfor Spec,
¢ reduct functor
Spec, - models for Spec,
refinement ¢
N SPEC Spec, - models for Spec,
> Specn - C models for Spec,
code l T T
generation |
~ Code > | ° a model (for Spec,)

Code generation via a logic mor phismfrom SPEC to
the logic of a programming language

FIFO-EVS-View in Nuprl

FIFO repl* X
n |

VIEW e
always p O currVIEW[p]
always increasing(views[p])
N

MsgView

n FIFO
0.0, p,4,9

always recvd[p,q,d] < sent[p,q,g]

EVS

Repl (I,f,Is,A) == nilJI. Rename (subscript(ls,Fi),A)
Subscript (Is,q) == Al. If Is<Ithen l[q] else |

Operations on records {x;:T;; ... X,,:T,}

B Intersection n
- Union of fields: X=X, O {X;: T} n {X:T,} = {X;:T;%,:T,}
- Intersection of types in joint fields: {x;:T,} n {Xx{:T,} = {X;:T{n T,}

m Relabeling p

- Renaming function p : Label - label
- T) =L x5 n{T [p()=]} ... } {n0O = Top)

B Refinement is Subtyping =
-r =X Ty X T = =4{Y:Sy - Y50
if r1 has more fields and finer types on joint fields

What is a record?

Nuprl answer:

Example: {X:N; y:Q list; f: N - B}
Generally XA X DALY
Define a signature A: {X{, ..., X} - Type

e.g, AX) =N, Aly)=Qlist, Af)=N - B

Define a record as a dependent function, an element of
11 {X{, ..., X} - A(i) suchas
rx)=0 r({y)=nl r(()=A(Xtrue).

Calculating the Colimit in Nuprl

Binary-Relation
{E:Type;

p:br—= IT

Reflexive-Relation

br.E-E- B}

i

= | p:bri= tr

Transitive-Relation

{E:Type;
mE-E-B
ref: Ox : E. x rr x}

l p:ITH <
Reflexive-Relation*

{E:Type:
<:E-E-FB
ref: Ox : E.Xx <:Ex}

Preorder-Relation

{E: Type;
tr:E-E-B
trans: Ox,y, z: E. xtrylytrz O x tr z}
Jp: tr = <
Transitive-Relation*
{E: Type;
<:E-E-B
trans: Ox,y,z:E. x<xyOy<z O x<z}

{E:Type;
<:E-E-B
ref: Ox : E.x<x
trans: Ox,y,z: E.xxyOy<z O x< 2z}

Main point

constructive type theory provides good object-oriented methods,
especially classes, subtyping, inheritance.
these are very useful in verifications
especially proof reuse
modular decomposition
there is a great deal to say
» Jason Hickey and Mark Bickford Verification work
» applications to algebra
» design of MetaPRL system
See Nuprl Web page
» Hickey

Outline

B Next steps
- How can we move closer?

- What milestones can we achieve?

Progress

Basic Discoveries (CS, Math, Logic)

eh
S e
A A A
Il IZ I3

Increasing Capabilities (15-25 years down stream)
C,GC,GC, .., C, ...

Increasing Impact

_——— == ===y
o e o e o o o o o e

Next steps

Applications on the horizon

reliable protocols in use
supporting massive user base

from compression to reconfiguration
reactive systems

beyond extended type checking

editor

editor

editor

Maude

SoS (Lisp)

MetaPRL

Java/ESC

v

O'Caml

v

Meta-

Nuprl

HOL/SPIN

PVS

Typechecker
[ESC/...

Advances toward a technology of trust

delivering new architectures

new capabilities depend on:
- feedback to the system architectures
- sharing ideas and technology

- pushing the envelope

Capitalizing on Speed

Moore’s law has dramatic effect,

must keep pushing the envelope

can automate more

Capitalizing on Knowledge

Integrating formal and informal knowledge

Storing knowledge in a shared library

Internal Milestones

We can do more for each other beyond publishing ideas
Shared verification of a subsystem or procedure is possible
- constraint solver
- arithmetic decision procedure

- extended type checker

Shared components are possible, e.g. a Library.

Sociology

critical mass of talent will come to the area with
a proper research environment

capabilities are fusing into a technology for
building high confidence systems

Summary

We can see a clear path to providing new
semantics-based automation capabilities in the
system development process.

There is more theory to apply but we must also
push the theory further to reap the benefits of
vastly increased computing power.

Conclusion

A realistic and robust vision for formal
methods is emerging. It will focus US
efforts and accelerate the emergence

of a new enabling technology of trust.

