Who Cites linorder? | |
linorder | Def Linorder(T;x,y.R(x;y)) == Order(T;x,y.R(x;y)) & Connex(T;x,y.R(x;y)) |
Thm* T:Type, R:(TTProp). Linorder(T;x,y.R(x,y)) Prop | |
connex | Def Connex(T;x,y.R(x;y)) == x,y:T. R(x;y) R(y;x) |
Thm* T:Type, R:(TTProp). Connex(T;x,y.R(x,y)) Prop | |
order | Def Order(T;x,y.R(x;y)) == Refl(T;x,y.R(x;y)) & (Trans x,y:T. R(x;y)) & AntiSym(T;x,y.R(x;y)) |
Thm* T:Type, R:(TTProp). Order(T;x,y.R(x,y)) Prop | |
anti_sym | Def AntiSym(T;x,y.R(x;y)) == x,y:T. R(x;y) R(y;x) x = y |
Thm* T:Type, R:(TTProp). AntiSym(T;x,y.R(x,y)) Prop | |
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c) |
Thm* T:Type, E:(TTProp). (Trans x,y:T. E(x,y)) Prop | |
refl | Def Refl(T;x,y.E(x;y)) == a:T. E(a;a) |
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop |
Syntax: | Linorder(T;x,y.R(x;y)) | has structure: | linorder(T; x,y.R(x;y)) |
About: