NOTE: | EquivRel(A)(R(_1;_2)) is | alpha-equivalent | to EquivRel x,y:A. R(x;y). |
Who Cites equiv rel? | |
equiv_rel | Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
Thm* ![]() ![]() ![]() ![]() ![]() ![]() | |
trans | Def Trans x,y:T. E(x;y) == ![]() ![]() ![]() ![]() ![]() |
Thm* ![]() ![]() ![]() ![]() ![]() ![]() | |
sym | Def Sym x,y:T. E(x;y) == ![]() ![]() ![]() |
Thm* ![]() ![]() ![]() ![]() ![]() ![]() | |
refl | Def Refl(T;x,y.E(x;y)) == ![]() |
Thm* ![]() ![]() ![]() ![]() ![]() ![]() |
Syntax: | EquivRel x,y:T. E(x;y) | has structure: | equiv_rel(T; x,y.E(x;y)) |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |