NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def Y(f) == (x.f(x(x)))(x.f(x(x)))

is mentioned by

Thm* Y(f,x. if x=0 1 else xf(x-1) fi)  [sfa_doc_ycomb_factorial_typing]
Def a list xs == Case of xs; nil  False ; x.ys  x = a  A  a list ys
Def (recursive)
[sfa_doc_inlist]
Def i steps of e from a == if i=0 a else e(i-1 steps of e from a) fi
Def (recursive)
[sfa_doc_sequence_rel]
Def Reverse(e)
Def == Case of e
Def == CaInj(x Inj(x)
Def == CaCons(s1;s2 Cons(Reverse(s2);Reverse(s1))
Def (recursive)
[sfa_doc_sexpr_reverse]
Def Size(s) == Case of s :  Inj(x 1 ; Cons(s1;s2 Size(s1)+Size(s2)
Def (recursive)
[sfa_doc_sexpr_size]
Def  u in XA^nP(u)
Def == n = 1   & P(X n2 & (X/a,restP(a ( u in restA^(n-1). P(u)))
Def (recursive)
[sfa_doc_ntuple_contains]
Def A^n == if n=0 Unit ; n=1 A else A(A^(n-1)) fi  (recursive)[sfa_doc_ntuple]
Def x! == if x=0 1 else x(x-2)! fi  (recursive)[sfa_doc_factorial2]
Def x! == if x=0 1 else x(x-1)! fi  (recursive)[sfa_doc_factorial]
Def mu(f) == if f(0) 0 else 1+mu(x.f(1+x)) fi  (recursive)[kleene_minimize]

In prior sections: list 1

IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

NuprlPrimitives Sections NuprlLIB Doc