Definitions
NuprlPrimitives
Sections
NuprlLIB
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
le
Def
A
B
==
B
<
A
Thm*
i
,
j
:
. (
i
j
)
Prop
nequal
Def
a
b
T
==
a
=
b
T
Thm*
A
:Type,
x
,
y
:
A
. (
x
y
)
Prop
sfa_doc_sample_intmod
Def
mod
k
==
x
,
y
:
//(
m
:
.
x
-
y
=
m
k
)
Thm*
k
:
.
mod
k
Type
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
NuprlPrimitives
Sections
NuprlLIB
Doc