Definitions
NuprlPrimitives
Sections
NuprlLIB
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
No other cites to report in NuprlPrimitives
sfa_doc_indscheme
Def Induction for
x
:
.
P
(
x
) ==
P
(0) & (
x
:
.
P
(
x
)
P
(
x
+1))
(
x
:
.
P
(
x
))
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
le
Def
A
B
==
B
<
A
Thm*
i
,
j
:
. (
i
j
)
Prop
not
Def
A
==
A
False
Thm*
A
:Prop. (
A
)
Prop
Syntax:
Induction for
x
:
.
P
(
x
)
has structure:
sfa_doc_indscheme(
x
.
P
(
x
))
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
NuprlPrimitives
Sections
NuprlLIB
Doc