| Who Cites rem nrel? |
|
rem_nrel | Def Rem(a;n;r) == q: . Div(a;n;q) & q n+r = a |
| | Thm* a: , n: , r: . Rem(a;n;r) Prop |
|
div_nrel | Def Div(a;n;q) == n q a < n (q+1) |
| | Thm* a: , n: , q: . Div(a;n;q) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
lelt | Def i j < k == i j & j<k |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |