To show this, we hold
. a:
.
q:
, r:
b. a = q
b+r
We use the true-for-less form of induction, assuming
a1:
. a1<a
(
q:
, r:
b. a1 = q
b+r)
and attempt to show q:
, r:
b. a = q
b+r
If
Otherwise,
a-b = q for someb+r
q ,![]()
r ,![]()
b
so, b+r
b+r
which show our goal to be satisfied using
QED
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |