| compose |
Def (f o g)(x) == f(g(x))
Thm* |
| decidable |
Def Dec(P) == P Thm* |
| equiv_rel |
Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)
Thm* |
| iff |
Def P Thm* |
| int_seg |
Def {i..j Thm* |
| nat |
Def Thm* |
| nat_plus |
Def Thm* |
| tidentity |
Def Id == Id
Thm* |
| lelt |
Def i |
| le |
Def A Thm* |
| not |
Def Thm* |
| trans |
Def Trans x,y:T. E(x;y) == Thm* |
| sym |
Def Sym x,y:T. E(x;y) == Thm* |
| refl |
Def Refl(T;x,y.E(x;y)) == Thm* |
| rev_implies |
Def P Thm* |
| identity |
Def Id(x) == x
Thm* |
About: