| decidable | Def Dec(P) == P    P Thm*  | 
| equiv_rel | Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y))  &  Sym x,y:T. E(x;y)  &  Trans x,y:T. E(x;y) Thm*  | 
| identity | Def Id(x) == x Thm*  | 
| iff | Def P   Q == (P   Q)  &  (P   Q) Thm*  | 
| int_seg | Def {i..j  } == {k:  | i  k  <  j } Thm*  | 
| nat | Def  == {i:  | 0  i } Thm*  | 
| lelt | Def i  j  <  k == i  j  &  j < k | 
| le | Def A  B ==  B < A Thm*  | 
| not | Def  A == A   False Thm*  | 
| trans | Def Trans x,y:T. E(x;y) ==  a,b,c:T. E(a;b)   E(b;c)   E(a;c) Thm*  | 
| sym | Def Sym x,y:T. E(x;y) ==  a,b:T. E(a;b)   E(b;a) Thm*  | 
| refl | Def Refl(T;x,y.E(x;y)) ==  a:T. E(a;a) Thm*  | 
| rev_implies | Def P   Q == Q   P Thm*  | 
About:
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |