Selected Objects
def | auto1 | Auto == < ( s,a. s),0,( s.true ) > |
THM | auto1_minimization | n: , f:( n (x,y: 2*//(x LangOf(Auto )-induced Equiv y))).
Bij( n; x,y: 2*//(x LangOf(Auto )-induced Equiv y); f) |
COM | auto1_howto | If you want to get number of state in minimal automata
that accepts the same language as 'Auto ' just type
term_to_string (evaluate_term 'ext{auto1_minimization}')
into your ML top loop. But keep in mind that in order
to get 'ext{auto1_minimization}' you will need to open
a term slot with Ctrl+o and type in "auto1_minimization".
In several minutes you will get lots of line as output.
Just look for a first number! |
def | auto2 | Auto == < ( s,a. 2-s),0,( s.s= 0) > |
THM | auto2_minimization | n: , f:( n (x,y: 2*//(x LangOf(Auto )-induced Equiv y))).
Bij( n; x,y: 2*//(x LangOf(Auto )-induced Equiv y); f) |
def | auto3 | Auto == < ( s,a. a),0,( s.s= 0) > |
THM | auto3_minimization | n: , f:( n (x,y: 3*//(x LangOf(Auto )-induced Equiv y))).
Bij( n; x,y: 3*//(x LangOf(Auto )-induced Equiv y); f) |
def | auto3_1 | Auto3_1 == < ( s,a. a),0,( s.true ) > |
THM | auto3_1_minimization | n: , f:( n (x,y: 1*//(x LangOf(Auto3_1)-induced Equiv y))).
Bij( n; x,y: 1*//(x LangOf(Auto3_1)-induced Equiv y); f) |
def | auto3_2 | Auto3_2 == < ( s,a. a),0,( s.true ) > |
THM | auto3_2_minimization | n: , f:( n (x,y: 2*//(x LangOf(Auto3_2)-induced Equiv y))).
Bij( n; x,y: 2*//(x LangOf(Auto3_2)-induced Equiv y); f) |
def | auto3_23 | auto3_23() == < ( s,a. a),0,( s.true ) > |
THM | auto3_23_minimization | n: , f:( n (x,y: 2*//(x LangOf(auto3_23())-induced Equiv y))).
Bij( n; x,y: 2*//(x LangOf(auto3_23())-induced Equiv y); f) |
def | auto3_3 | auto3_3() == < ( s,a. a),0,( s.true ) > |
THM | auto3_3_minimization | n: , f:( n (x,y: 3*//(x LangOf(auto3_3())-induced Equiv y))).
Bij( n; x,y: 3*//(x LangOf(auto3_3())-induced Equiv y); f) |
def | auto4 | Auto4 == < ( s,a. 1-s),0,( s.s= 0) > |
THM | auto4_minimization | n: , f:( n (x,y: 2*//(x LangOf(Auto4)-induced Equiv y))).
Bij( n; x,y: 2*//(x LangOf(Auto4)-induced Equiv y); f) |
def | auto_oddeven | OddEven#n == < ( s: (2 n). a: n. (s+(2 a)) rem (2 n)),0,( s: (2 n). s= 0  s= (2 n)-1) > |
THM | oddeven_minimization | n: .
k: , f:( k (x,y: n*//(x LangOf(OddEven#n)-induced Equiv y))).
Bij( k; x,y: n*//(x LangOf(OddEven#n)-induced Equiv y); f) |