elimination Sections ClassicalProps(jlc) Doc

Def a |= S == FS.H.a | F FS.C.a |= F

Thm* hyp,M,N:Formula List, q,r:Formula, a:Assignment. a |= < hyp,M @ (qr.N) > a |= < q.hyp,r.(M @ N) > formula_imp_right_sat

Thm* concl,M,N:Formula List, q,r:Formula, a:Assignment. a |= < r.(M @ N),concl > & a |= < M @ N,q.concl > a |= < M @ (qr.N),concl > formula_imp_left_sat

Thm* concl,M,N:Formula List, q,r:Formula, a:Assignment. a |= < q.(M @ N),concl > & a |= < r.(M @ N),concl > a |= < M @ (qr.N),concl > formula_or_left_sat

Thm* hyp,M,N:Formula List, q,r:Formula, a:Assignment. a |= < hyp,[q; r/ M @ N] > a |= < hyp,M @ (qr.N) > formula_or_right_sat

Thm* hyp,M,N:Formula List, q,r:Formula, a:Assignment. a |= < hyp,q.(M @ N) > & a |= < hyp,r.(M @ N) > a |= < hyp,M @ (qr.N) > formula_and_right_sat

Thm* concl,M,N:Formula List, q,r:Formula, a:Assignment. a |= < [q; r/ M @ N],concl > a |= < M @ (qr.N),concl > formula_and_left_sat

Thm* hyp,M,N:Formula List, f:Formula, a:Assignment. a |= < f.hyp,M @ N > a |= < hyp,M @ (f.N) > formula_not_right_sat

Thm* concl,M,N:Formula List, f2:Formula, a:Assignment. a |= < M @ N,f2.concl > a |= < M @ (f2.N),concl > formula_not_left_sat

In prior sections: sequent satisfaction sequent sat lemmas full sequent assignment