Thms exponent Sections AutomataTheory Doc

NOTE: i is just a notation for {0..i}

int_seg Def {i..j} == {k:| i k < j}

Thm* m,n:. {m..n} Type

en Def (rec) en(l) == if null(l) 0 else hd(l)+en(tl(l))n fi

Thm* n:, l:n*. en(l)

length Def (rec) ||as|| == Case of as : null 0 ; a.as' ||as'||+1

Thm* l:A*. ||l||

Thm* ||nil||

nat_plus Def == {i:| 0 < i}

Thm* Type

lelt Def i j < k == ij & j < k

tl Def tl(l) == ListInd(l;nil;h,t,v.t)

Thm* l:A*. tl(l) A*

hd Def hd(l) == ListInd(l;"?";h,t,v.h)

Thm* l:A*. (||l|| 1 ) hd(l) A

null Def null(as) == Case of as : null true ; a.as' false

Thm* as:T*. null(as)

Thm* null(nil)

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* (A) Prop