Thms finite sets Sections AutomataTheory Doc

finite Def Fin(s) == n:, f:(ns). Bij(n;s;f)

Thm* Fin(T) Prop

int_seg Def {i..j} == {k:| i k < j}

Thm* m,n:. {m..n} Type

biject Def Bij(A;B;f) == Inj(A;B;f) & Surj(A;B;f)

Thm* f:(AB). Bij(A;B;f) Prop

nat Def == {i:| 0i}

Thm* Type

lelt Def i j < k == ij & j < k

surject Def Surj(A;B;f) == b:B. a:A. f(a) = b

Thm* f:(AB). Surj(A;B;f) Prop

inject Def basic Inj(A;B;f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* f:(AB). Inj(A;B;f) Prop

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* (A) Prop