finite
sets
Sections
AutomataTheory
Doc
identity
Def
Id(x) == x
Thm* Id
A
A
int_seg
Def
{i..j
} == {k:
| i
k < j}
Thm*
m,n:
. {m..n
}
Type
nat
Def
== {i:
| 0
i}
Thm*
Type
lelt
Def
i
j < k == i
j & j < k
le
Def
A
B ==
B < A
Thm*
i,j:
. i
j
Prop
not
Def
A == A
False
Thm* (
A)
Prop