Thms finite sets Sections AutomataTheory Doc

compose Def (f o g)(x) == f(g(x))

Thm* f:(BC), g:(AB). f o g AC

int_seg Def {i..j} == {k:| i k < j}

Thm* m,n:. {m..n} Type

tidentity Def Id == Id

Thm* Id AA

nat Def == {i:| 0i}

Thm* Type

inject Def basic Inj(A;B;f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* f:(AB). Inj(A;B;f) Prop

surject Def Surj(A;B;f) == b:B. a:A. f(a) = b

Thm* f:(AB). Surj(A;B;f) Prop

lelt Def i j < k == ij & j < k

identity Def Id(x) == x

Thm* Id AA

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* (A) Prop