graph
1
1
Sections
Graphs
Doc
Def
upto(i;j) == if i <
j
[i / upto(i+1;j)] else nil fi (recursive)
is mentioned by
Thm*
i,j:
. no_repeats(
;upto(i;j))
[no_repeats_upto]
Thm*
n:
, f,x:Top. primrec(n;x;f) ~ list_accum(i,y.f(y,i);x;upto(0;n))
[primrec_list_accum]
Thm*
i,j,k:
. i
j
j
k
(upto(i;k) ~ (upto(i;j) @ upto(j;k)))
[append_upto]
Thm*
i,j:
, k:
(j-i). upto(i;j)[k] = i+k
[select_upto]
Thm*
j:
, i:
j. ||upto(i;j)|| = j-i
[length_upto]
Thm*
i,j,k:
. (k
upto(i;j))
i
k & k < j
[member_upto]
Thm*
i,j:
. upto(i;j)
List
[upto_int_wf]
Try larger context:
Graphs
graph
1
1
Sections
Graphs
Doc