graph 1 1 Sections Graphs Doc

TheoremName
Thm* R:(AA'Prop), P:(BA), P':(BA'), F,G,H:(BAA), F',G',H':(BA'A'), N:(BA(B List)), N':(BA'(B List)), M:(A), M':(A'). (i:B, s:A. P(i,s) M(F(i,s))M(s)) (i:B, s:A. M(G(i,s))M(s)) (i:B, s:A. P(i,s) M(H(i,s)) < M(s)) (i:B, s:A'. P'(i,s) M'(F'(i,s))M'(s)) (i:B, s:A'. M'(G'(i,s))M'(s)) (i:B, s:A'. P'(i,s) M'(H'(i,s)) < M'(s)) (j:B, u:A, v:A'. R(u,v) (P(j,u) P'(j,v))) (j:B, u:A, v:A'. R(u,v) P(j,u) P'(j,v) R(F(j,u),F'(j,v))) (j:B, u:A, v:A'. R(u,v) P(j,u) P'(j,v) R(H(j,u),H'(j,v))) (j:B, u:A, v:A'. R(u,v) R(G(j,u),G'(j,v))) (j:B, u:A, v:A'. R(u,v) N(j,u) = N'(j,v)) (j:B, u:A, v:A'. R(u,v) R(process u j where process s i == if P(i,s) then F(i,s) else G(i,s) where xs := N(i,s); s:= H(i,s); while not null xs { s := process s (hd xs); xs := tl xs; } ,process v j where process s i == if P'(i,s) then F'(i,s) else G'(i,s) where xs := N'(i,s); s:= H'(i,s); while not null xs { s := process s (hd xs); xs := tl xs; } ))[accumulate-rel]
cites
Thm* A,B:Type, P:(BA), F,G,H:(BAA), N:(BA(B List)), M:(A). (i:B, s:A. P(i,s) M(F(i,s))M(s)) (i:B, s:A. M(G(i,s))M(s)) (i:B, s:A. P(i,s) M(H(i,s)) < M(s)) (j:B, u:A. process u j where process s i == if P(i,s) then F(i,s) else G(i,s) where xs := N(i,s); s:= H(i,s); while not null xs { s := process s (hd xs); xs := tl xs; } {s:A| M(s)M(u) })[accumulate_wf]

graph 1 1 Sections Graphs Doc