Rank | Theorem | Name |
5 | Thm* A,B:T List, x,y:T. x before y A @ B  x before y A x before y B (x A) & (y B) | [l_before_append_iff] |
cites |
4 | Thm* C,A,B:T List. C A @ B  ( A',B':T List. C = (A' @ B') & A' A & B' B) | [sublist_append_iff] |
0 | Thm* x:T, L:T List. (x L)  [x] L | [member_iff_sublist] |
2 | Thm* L1,L2,L3:T List. L1 L2  L2 L3  L1 L3 | [sublist_transitivity] |
1 | Thm* x1,x2:T, L1,L2:T List. [x1 / L1] [x2 / L2]  x1 = x2 & L1 L2 [x1 / L1] L2 | [cons_sublist_cons] |