Rank | Theorem | Name |
6 | Thm* L:T List, x,y:T. x before y L  ( A,B:T List. L = (A @ B) & (x A) & (y B)) | [l_before_decomp] |
cites |
3 | Thm* x:T, L:T List. [x / L] nil  False | [cons_sublist_nil] |
1 | Thm* x1,x2:T, L1,L2:T List. [x1 / L1] [x2 / L2]  x1 = x2 & L1 L2 [x1 / L1] L2 | [cons_sublist_cons] |
0 | Thm* a,x:T. (x [a])  x = a | [member_singleton] |
0 | Thm* x:T, L:T List. (x L)  [x] L | [member_iff_sublist] |
5 | Thm* A,B:T List, x,y:T. x before y A @ B  x before y A x before y B (x A) & (y B) | [l_before_append_iff] |