Rank | Theorem | Name |
6 | Thm* n: , a,b: . sum(a+b i | i < n) = ((n (a+a+b (n-1))) 2) | [sum_arith] |
cites |
0 | Thm* n: , a,b: . sum(a+b i | i < n) 2 = n (a+a+b (n-1)) | [sum_arith1] |
3 | Thm* a,b: , n:  . n a = n b  a = b | [mul_cancel_in_eq] |
0 | Thm* a: , n:  . a = (a n) n+(a rem n) | [div_rem_sum] |
3 | Thm* a,b: , n: . ((a+b n) rem n) = (a rem n) | [rem_invariant] |
5 | Thm* a:{...0}, n: . (a rem n) = -((-a) rem n) | [rem_2_to_1] |