hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def b == if b True else False fi

is mentioned by

Thm* b:b  b = false[not_assert_imp_eq_bfalse]
Thm* b:b  b = true[assert_imp_eq_btrue]
Thm* p:p  p[not_not]
Thm* i,j:i<j  ji[not_lt_int]
Thm* i,j:ij  j<i[not_le_int]
Thm* p,q:(p  q p & q[not_or]
Thm* p,q:(p & q p  q[not_and]
Thm* A:Type, b:x:(bA), y:((b)A). bif(bbx.x(bx); by.y(by))  A[bif_wf]
Thm* false  False[assert_of_bfalse]
Thm* true  True[assert_of_btrue]
Thm* x,y:. (x = y (x  y)[assert_of_bequal_bools]
Thm* x,y:x = y  (x  y)[bequal_bools]
Thm* x,y:T. (x = y x = y[assert_of_bequal]
Thm* P:(T). (x:TP(x))  (x:TP(x))[assert_of_bexists]
Thm* P:(T). (x:TP(x))  (x:TP(x))[assert_of_ball]
Thm* P:. (P) = P[prop_to_bool_char_2]
Thm* P:Prop{2}. (P P[prop_to_bool_2_char]
Thm* (P P[prop_to_bool_char]
Def type_definition('a;'b;P;rep)
Def == (x',x'':'brep(x') = rep(x'' 'a  x' = x'')
Def == & (x:'a(P(x))  (x':'bx = rep(x')))
[type_definition]
Def x:TP(x) == (x:TP(x))[bexists]
Def x:TP(x) == (x:TP(x))[ball]

In prior sections: bool 1

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol Sections HOLlib Doc