hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def x:AB(x) == x:AB(x)

is mentioned by

Thm* x:A. (y:Ax = y True[exists_explicit_2]
Thm* x:A. (y:Ay = x True[exists_explicit_1]
Thm* (x:A. False)  False[exists_false]
Thm* T:S, P:(TProp). (x:TP(x))  (x:TP(x))[not_all]
Thm* T:S, P:(TProp). (x:TP(x))  (x:TP(x))[not_exists]
Thm* 'a,'b:S, P:('b), rep:('a'b), abs:('b'a).
Thm* iso_pair('a;'b;P;rep;abs)
Thm* 
Thm* (rep':('a'b). type_definition('b;'a;P;rep'))
[type_def_iso]
Thm* P:(T). (x:TP(x))  (x:TP(x))[assert_of_bexists]
Thm* 'a:S, P,Q:('aProp).
Thm* (x:'aQ(x P(x))  (x:'aQ(x))  P(@x:'aQ(x))
[choose_elim_pos]
Def type_definition('a;'b;P;rep)
Def == (x',x'':'brep(x') = rep(x'' 'a  x' = x'')
Def == & (x:'a(P(x))  (x':'bx = rep(x')))
[type_definition]
Def x:TP(x) == (x:TP(x))[bexists]
Def S == {T:Type| x:T. True }[stype]

In prior sections: core fun 1

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol Sections HOLlib Doc