hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def Prop == Type

is mentioned by

Thm* (True  P P[true_imp]
Thm* (False  P True[false_imp]
Thm* (P  True)  True[imp_true]
Thm* (P  False)  P[imp_false]
Thm* P & False  False[and_false]
Thm* False & P  False[false_and]
Thm* P & True  P[and_true]
Thm* True  P  True[true_or]
Thm* P  False  P[or_false]
Thm* False  P  P[false_or]
Thm* P  True  True[or_true]
Thm* True & P  P[true_and]
Thm* P  (f:eq('a). P)[add_eq_pred_qf]
Thm* 'a:S, P:(eq('a)Prop).
Thm* (f:eq('a). P(f))  P(<eq_pred:(x:'ay:'ax = y)>)
[eq_pred_unabstraction]
Thm* P:(('a'a)Prop). 
Thm* P(<eq_pred:(x:'ay:'ax = y)>)  (f:eq('a). P(f))
[eq_pred_abstraction]
Thm* T:S, P:(TProp). (x:TP(x))  (x:TP(x))[not_all]
Thm* T:S, P:(TProp). (x:TP(x))  (x:TP(x))[not_exists]
Thm* 'a,'b:S, P:('b), rep:('a'b), abs:('b'a).
Thm* iso_pair('a;'b;P;rep;abs Prop
[iso_pair_wf]
Thm* 'a:S, P,Q:('aProp).
Thm* (x:'aQ(x P(x))  (x:'aQ(x))  P(@x:'aQ(x))
[choose_elim_pos]
Thm* 'a:S, P,Q:('aProp).
Thm* (x:'aQ(x P(x))
Thm* 
Thm* ((x:'aQ(x))  (x:'aP(x)))  P(@x:'aQ(x))
[choose_elim_neg]
Thm* P:('aProp), x:'aP(x P(@x:'aP(x))[choose_true]
Thm* 'a:S, P:('aProp). lem('a) = lem({x:'a| True })  'a[lem_extensionality_axiom]
Thm* P:Prop{2}. (P P[prop_to_bool_2_char]
Thm* (P P[prop_to_bool_char]
Thm* P:Prop{2}. (P [prop_to_bool_2_wf]

In prior sections: core fun 1 well fnd int 1 bool 1

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol Sections HOLlib Doc