hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def True == 0  

is mentioned by

Thm* t:At = t  True[eq_refl]
Thm* False  True[not_false]
Thm* True  False[not_true]
Thm* x:A. (y:Ax = y True[exists_explicit_2]
Thm* x:A. (y:Ay = x True[exists_explicit_1]
Thm* (x:A. True)  True[all_true]
Thm* (True  P P[true_imp]
Thm* (False  P True[false_imp]
Thm* (P  True)  True[imp_true]
Thm* P & True  P[and_true]
Thm* True  P  True[true_or]
Thm* P  True  True[or_true]
Thm* True & P  P[true_and]
Thm* true  True[assert_of_btrue]
Thm* 'a:S, P:('aProp). lem('a) = lem({x:'a| True })  'a[lem_extensionality_axiom]
Def S == {T:Type| x:T. True }[stype]

In prior sections: core bool 1

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol Sections HOLlib Doc