hol
arithmetic
2
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Theorem
Name
Thm*
all
Thm*
(
n
:hnum. implies
Thm* (
n
:hnum.
(lt(0,
n
)
Thm* (
n
:hnum.
,all
Thm* (
n
:hnum. ,
(
k
:hnum. and
Thm* (
n
:hnum. ,(
k
:hnum.
(equal(
k
,add(mult(div(
k
,
n
),
n
),mod(
k
,
n
)))
Thm* (
n
:hnum. ,(
k
:hnum.
,lt(mod(
k
,
n
),
n
)))))
[hdivision]
cites the following:
Thm*
a
:
,
n
:
.
a
= (
a
n
)
n
+(
a
rem
n
)
[div_rem_sum]
Thm*
a
:
,
n
:
. 0
(
a
rem
n
) & (
a
rem
n
)<
n
[rem_bounds_1]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol
arithmetic
2
Sections
HOLlib
Doc