hol list 1 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def bif(bbx.x(bx); by.y(by)) == if b x(*) else y(x.x) fi

is mentioned by

Def el == n:l:'a List. if n=0 then hd(l) else el(n-1,tl(l)) fi 
Def (recursive)
[hel]
Def hd == l:'a List. if null(l) then arb('a) else head(l) fi [hhd]
Def is_list_rep
Def == r:('a)f:'a
Def == r:('a)n:
Def == r:('a)(r
Def == r:('a)= <m:. if m<n then f(m) else @x:'a. true fi ,n>)
[his_list_rep]
Def every(p;l) == if null(l) then true else (p(head(l)))every(p;tl(l)) fi 
Def (recursive)
[every]
Def map2(f;l1;l2)
Def == if null(l1)
Def == then nil
Def == else if null(l2)
Def == else then nil
Def == else else cons((f(head(l1),head(l2))); map2(f;tl(l1);tl(l2)))
Def == else fi 
Def == fi 
Def (recursive)
[map2]
Def flatten(l) == if null(l) then nil else head(l) @ flatten(tl(l)) fi 
Def (recursive)
[flatten]
Def it_sum(l) == if null(l) then 0 else head(l)+it_sum(tl(l)) fi   (recursive)[it_sum]
Def rep_list('a;l) == <n:. if n<||l|| then l[n] else arb('a) fi ,||l||>[rep_list]

In prior sections: hol bool hol restr binder hol num hol prim rec hol arithmetic 1

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol list 1 Sections HOLlib Doc