Rank | Theorem | Name |
8 | Thm* 'a:S.
Thm* all
Thm* ( h:'a. all
Thm* ( h:'a. ( t:hlist('a). equal
Thm* ( h:'a. ( t:hlist('a). (cons(h,t)
Thm* ( h:'a. ( t:hlist('a). ,abs_list
Thm* ( h:'a. ( t:hlist('a). ,(pair
Thm* ( h:'a. ( t:hlist('a). ,((( m:hnum. cond
Thm* ( h:'a. ( t:hlist('a). ,((( m:hnum. (equal(m,0)
Thm* ( h:'a. ( t:hlist('a). ,((( m:hnum. ,h
Thm* ( h:'a. ( t:hlist('a). ,((( m:hnum. ,fst(rep_list(t),pre(m))))
Thm* ( h:'a. ( t:hlist('a). ,(,suc(snd(rep_list(t)))))))) | [hcons_def] |
cites the following: |
2 | Thm* 'a,'b:S, P:('b  ), rep:('a 'b), abs:('b 'a), a:'a, r:'b.
Thm* iso_pair('a;'b;P;rep;abs)  rep(a) = r  a = abs(r) | [iso_pair_rep_to_abs] |
7 | Thm* 'a:S. iso_pair('a List;(  'a) ;is_list_rep;rep_list;abs_list) | [list_iso] |
0 | Thm* a:T, as:T List, i: . i 0  cons(a; as)[i] = a | [select_cons_hd] |
0 | Thm* a:T, as:T List, i: . 0<i  i ||as||  cons(a; as)[i] = as[(i-1)] | [select_cons_tl] |
0 | Thm* l:A List. ||l|| 0 | [non_neg_length] |