hol
prim
rec
Sections
HOLlib
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Theorem
Name
Thm*
'a
:S,
x
:
'a
,
f
:(
'a
'a
),
n
:
.
fun
:(
'a
). simp_rec_rel(
fun
,
x
,
f
,
n
)
[simp_rec_exists]
cites the following:
Thm*
'a
:S.
Thm*
all
Thm*
(
x
:
'a
. all
Thm* (
x
:
'a
.
(
f
:
'a
'a
. all
Thm* (
x
:
'a
. (
f
:
'a
'a
.
(
n
:hnum. exists
Thm* (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum.
(
fun
:hnum
'a
. simp_rec_rel
Thm* (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. (
fun
:hnum
'a
.
(
fun
Thm* (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. (
fun
:hnum
'a
.
,
x
Thm* (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. (
fun
:hnum
'a
.
,
f
Thm* (
x
:
'a
. (
f
:
'a
'a
. (
n
:hnum. (
fun
:hnum
'a
.
,
n
)))))
[hsimp_rec_exists]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
hol
prim
rec
Sections
HOLlib
Doc