IteratedBinops
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Theorem
Name
Thm*
a
,
b
:
,
e
:({
a
..
b
}
).
a
+1 =
b
(
i
:{
a
..
b
}.
e
(
i
)) =
e
(
a
)
[sum_via_intseg_singleton]
cites the following:
Thm*
f
:(
A
A
A
),
u
:
A
.
Thm*
is_ident(
A
;
f
;
u
)
Thm*
Thm*
(
a
,
b
:
,
e
:({
a
..
b
}
A
).
a
+1 =
b
(Iter(
f
;
u
)
i
:{
a
..
b
}.
e
(
i
)) =
e
(
a
))
[iter_via_intseg_singleton]
Thm*
is_ident(
; (
x
,
y
.
x
+
y
); 0)
[intadd_ident_zero]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
IteratedBinops
Sections
DiscrMathExt
Doc