list 3 jlc Sections Support(jlc) Doc

Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

is mentioned by

Thm* a:T, R,S:T List, b:T. [a] = (R @ (b.S)) a = b[singelton_append_equals_lemma]
Thm* P:(TProp), L:T List. xL.P(x) (M,N:T List, x:T. P(x) & L = (M @ (x.N)))[list_exists_is_member_append_lemma]
Thm* P:(TProp), L,M:T List. x(L @ M).P(x) xL.P(x) xM.P(x)[list_exists_append_lemma]
Thm* P:(TProp), L,M:T List. x(L @ M).P(x) xL.P(x) & xM.P(x)[list_all_append_lemma]
Thm* L1,L2:T List, eq1,eq2,eq3:{T}, L3,L4:T List. Discrete{T} eq1 = eq2 eq2 = eq3 L1(~eq1)L2 L3(~eq2)L4 (L1 @ L3)(~eq3)(L2 @ L4)[append_functionality_wrt_list_iso]
Thm* eq:{T=}, L:T List, x:T. x(eq) L (M,N:T List. L = (M @ (x.N)) & remove(eq;x;L) = (M @ N))[is_member_remove_lemma]
Thm* eq:{T=}, L:T List, x:T. (M,N:T List. L = (M @ (x.N))) x(eq) L[append_is_member_lemma]
Thm* L1,L2:T List, eq1,eq2,eq3:{T}, L3,L4:T List. Discrete{T} eq1 = eq2 eq2 = eq3 L1(eq1)L2 L3(eq2)L4 (L1 @ L3)(eq3)(L2 @ L4)[append_functionality_wrt_sublist]
Thm* Discrete{T} (eq:{T}, L,M:T List. (L @ M)(~eq)(M @ L))[append_commutes_under_list_iso]
Thm* Discrete{T} (eq:{T}, L,M:T List. (L @ M)(eq)(M @ L))[append_commutes_under_sublist]
Thm* eq:{T}, L,M:T List, x:T. x(eq) (L @ M) x(eq) (M @ L)[append_commutes_under_is_member]
Thm* eq:{T}, x:T, L,M:T List. x(eq) (L @ M) x(eq) L x(eq) M[is_member_append_disjunction_lemma]
Thm* eq:{T}, L,M:T List, x:T. x(eq) (L @ M) x(eq) L x(eq) M[is_member_of_append_lemma]
Thm* eq:{T}, L:T List, x:T. x(eq) L (M,N:T List, y:T. eq(x,y) & L = (M @ (y.N)))[is_member_append_lemma1]
Thm* eq:{T=}, L:T List, x:T. x(eq) L (M,N:T List. L = (M @ (x.N)))[is_member_append_lemma]
Thm* L1,L2,L3:T List. (L1 @ (L2 @ L3)) = ((L1 @ L2) @ L3)[append_associative]
Thm* L:T List. (L @ nil) = L[append_nil_right_identity]

In prior sections: list 1


list 3 jlc Sections Support(jlc) Doc