list 3 jlc Sections Support(jlc) Doc

Def x:A. B(x) == x:AB(x)

is mentioned by

Thm* eq:{T=}, L,M:T List. L(eq)M (x:{x:T| x(eq) L }. x(eq) M)[is_intersection_implies_exists_element]
Thm* P:(TProp), L:T List. xL.P(x) (M,N:T List, x:T. P(x) & L = (M @ (x.N)))[list_exists_is_member_append_lemma]
Thm* eq:{T=}, L:T List, x:T. x(eq) L (M,N:T List. L = (M @ (x.N)) & remove(eq;x;L) = (M @ N))[is_member_remove_lemma]
Thm* eq:{T=}, u:T, L:T List. u(eq) L (v:T, M:T List. L = v.M)[is_member_non_nil]
Thm* eq:{T=}, L:T List, x:T. (M,N:T List. L = (M @ (x.N))) x(eq) L[append_is_member_lemma]
Thm* eq:{T}, L:T List, x:T. x(eq) L (M,N:T List, y:T. eq(x,y) & L = (M @ (y.N)))[is_member_append_lemma1]
Thm* eq:{T=}, L:T List, x:T. x(eq) L (M,N:T List. L = (M @ (x.N)))[is_member_append_lemma]
Thm* eq:{T=}, L,M:T List. disjoint(eq;L;M) (x:T. x(eq) L & x(eq) M)[not_disjoint_is_member_lemma]
Thm* eq:{T=}, P:(TType), L:T List. xL.P(x) (x:{x:T| x(eq) L }. P(x))[list_exists_exists]
Thm* eq:{T=}, P:(TProp), L:T List. (x:T. x(eq) L & P(x)) yL.P(y)[list_exists_is_member_lemma]
Thm* eq:{T}, P:(T), L:T List. xL.P(x) (x:{x:T| x(eq) L }. P(x))[not_list_all_2_implies_exists_not]
Thm* eq:{T}, L:T List. L nil (x:T. x(eq) L)[non_nil_is_member]
Thm* equiv:{T}, eq:{T=}, u:T, L:T List. u(equiv) L (v:T. equiv(u,v) & v(eq) L)[is_member_equality_strengthening_lemma]
Thm* L:T List. null(L) = false (h:T, t:T List. L = h.t)[null_false_lemma]

In prior sections: core discrete jlc core 3 jlc fun 1 int 2


list 3 jlc Sections Support(jlc) Doc