mb event system 2 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def Id == Atom

is mentioned by

Thm* es:ES, e,e':E. e  e'   loc(e) = loc(e' Id[es-le-loc]
Thm* es:ES, e:E, l:IdLnk, tg:Id.
Thm* kind(e) = rcv(ltg)
Thm* 
Thm* loc(e) = destination(l) & loc(sender(e)) = source(l)
[es-loc-rcv]
Thm* the_es:ES, e:E. first(e loc(pred(e)) = loc(e Id[es-loc-pred]
Thm* the_es:ES. 
Thm* (Trans e,e':E. (e <loc e'))
Thm* & SWellFounded((e <loc e'))
Thm* & (e,e':E. loc(e) = loc(e' Id  (e <loc e' e = e'  (e' <loc e))
Thm* & (e:E. first(e (e':E. (e' <loc e)))
Thm* & (e:E. 
Thm* & (first(e)
Thm* & (
Thm* & ((pred(e) <loc e) & (e':E. ((pred(e) <loc e') & (e' <loc e))))
Thm* & (e:E. 
Thm* & (first(e)
Thm* & (
Thm* & ((x:Id. (x when e) = (x after pred(e))  vartype(loc(e);x)))
Thm* & (Trans e,e':E. (e < e'))
Thm* & SWellFounded((e < e'))
Thm* & (e:E. 
Thm* & (isrcv(e)
Thm* & (
Thm* & (sends(lnk(e);sender(e))[index(e)] = msg(lnk(e);tag(e);val(e))  Msg)
Thm* & (e,e':E. (e <loc e' (e < e'))
Thm* & (e:E. isrcv(e (sender(e) < e))
Thm* & (e,e':E.
Thm* & ((e < e')
Thm* & (
Thm* & (first(e') & (e < pred(e'))  e = pred(e' E
Thm* & ( isrcv(e') & (e < sender(e'))  e = sender(e' E)
Thm* & (e:E. isrcv(e loc(e) = destination(lnk(e)))
Thm* & (e:E, l:IdLnk.
Thm* & (loc(e) = source(l sends(l;e) = nil  (Msg on l) List)
Thm* & (e,e':E.
Thm* & (isrcv(e)
Thm* & (
Thm* & (isrcv(e')
Thm* & (
Thm* & (lnk(e) = lnk(e')
Thm* & (
Thm* & (((e <loc e')
Thm* & ((
Thm* & (((sender(e) <loc sender(e'))
Thm* & (( sender(e) = sender(e' E & index(e)<index(e')))
Thm* & (e:E, l:IdLnk, n:||sends(l;e)||.
Thm* & (e':E. isrcv(e') & lnk(e') = l & sender(e') = e  E & index(e') = n  )
[es-axioms]
Thm* the_es:ES, e:E, x:Id. (x after e vartype(loc(e);x)[es-after_wf]
Thm* the_es:ES, e:E, x:Id. (x when e vartype(loc(e);x)[es-when_wf]
Thm* the_es:ES, i,x:Id. vartype(i;x Type[es-vartype_wf]
Thm* the_es:ES, e:E. isrcv(e tag(e Id[es-tag_wf]
Thm* the_es:ES, e:E. loc(e Id[es-loc_wf]
Thm* E:Type, eq:EqDecider(E), T,V:(IdIdType), M:(IdLnkIdType),
Thm* loc:(EId), k:(EKnd), v:(e:Eeventtype(k;loc;V;M;e)),
Thm* w,a:(x:Ide:ET(loc(e),x)), snds:(l:IdLnkE(Msg_sub(lM) List)),
Thm* sndr:({e:E| isrcv(k(e)) }E), i:(e:{e:E| isrcv(k(e)) }||snds
Thm* sndr:({e:E| isrcv(k(e)) }E), i:(e:{e:E| isrcv(k(e)) }||(lnk(k(e))
Thm* sndr:({e:E| isrcv(k(e)) }E), i:(e:{e:E| isrcv(k(e)) }||,sndr(e))||),
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms{i:l}
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(E;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(T;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(M;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(loc;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(k;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(v;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(w;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(a;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(snds;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(sndr;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(i;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(f;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(prd;
Thm* f:(E), prd:({e':Ef(e') }E), cl:(EEProp), p:ESAxioms(cl).
Thm* mk-es(EeqTVMlockvwasndssndrifprdclp ES
[mk-es_wf]
Thm* E:Type{i}, T,V:(IdIdType{i}), M:(IdLnkIdType{i}), loc:(EId),
Thm* kind:(EKnd), val:(e:Eeventtype(kind;loc;V;M;e)),
Thm* when,after:(x:Ide:ET(loc(e),x)),
Thm* sends:(l:IdLnkE(Msg_sub(lM) List)),
Thm* sender:({e:E| isrcv(kind(e)) }E),
Thm* index:(e:{e:E| isrcv(kind(e)) }||sends(lnk(kind(e)),sender(e))||),
Thm* first:(E), pred:({e':Efirst(e') }E), causl:(EEProp{i}).
Thm* ESAxioms{i:l}
Thm* ESAxioms(E;
Thm* ESAxioms(T;
Thm* ESAxioms(M;
Thm* ESAxioms(loc;
Thm* ESAxioms(kind;
Thm* ESAxioms(val;
Thm* ESAxioms(when;
Thm* ESAxioms(after;
Thm* ESAxioms(sends;
Thm* ESAxioms(sender;
Thm* ESAxioms(index;
Thm* ESAxioms(first;
Thm* ESAxioms(pred;
Thm* ESAxioms(causl)
Thm*  Prop{i'}
[ESAxioms_wf]
Thm* E:Type, V:(IdIdType), M:(IdLnkIdType), loc:(EId), k:(EKnd),
Thm* e:E. eventtype(k;loc;V;M;e Type
[eventtype_wf]
Thm* i:Id, k:Knd. has-src(i;k isrcv(k) & source(lnk(k)) = i[assert-has-src]
Thm* i:Id, k:Knd. has-src(i;k [has-src_wf]
Thm* p:IdLnk List, i,j:Id. lconnects(p;i;j Prop[lconnects_wf]
Thm* l:IdLnk, p:IdLnk List.
Thm* lpath([l / p])
Thm* 
Thm* lpath(p)
Thm* & (||p|| = 0    destination(l) = source(hd(p)) & hd(p) = lnk-inv(l))
[lpath_cons]
Thm* l:IdLnk. destination(lnk-inv(l)) = source(l)[ldst-inv]
Thm* l:IdLnk. source(lnk-inv(l)) = destination(l)[lsrc-inv]
Thm* a,b:Id. Dec(a = b)[decidable__equal_Id]
Thm* a,b:Id. a = b  a = b[assert-eq-id]
Thm* a:Id. a = a ~ true[eq_id_self]
Thm* B:Type, k:Knd, f:(IdB), g:(IdLnkIdB).
Thm* kindcase(k;a.f(a);l,t.g(l,t))  B
[kindcase_wf]
Def (e <loc e') == loc(e) = loc(e' Id & (e < e')[es-locl]
Def ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
[event_system]
Def ESAxioms{i:l}
Def ESAxioms(E;
Def ESAxioms(T;
Def ESAxioms(M;
Def ESAxioms(loc;
Def ESAxioms(kind;
Def ESAxioms(val;
Def ESAxioms(when;
Def ESAxioms(after;
Def ESAxioms(sends;
Def ESAxioms(sender;
Def ESAxioms(index;
Def ESAxioms(first;
Def ESAxioms(pred;
Def ESAxioms(causl)
Def == (e,e':Eloc(e) = loc(e' Id  causl(e,e' e = e'  causl(e',e))
Def == & (e:E(first(e))  (e':Eloc(e') = loc(e Id  causl(e',e)))
Def == & (e:E
Def == & ((first(e))
Def == & (
Def == & (loc(pred(e)) = loc(e Id & causl(pred(e),e)
Def == & (& (e':E
Def == & (& (loc(e') = loc(e Id  (causl(pred(e),e') & causl(e',e))))
Def == & (e:E
Def == & ((first(e))  (x:Id. when(x,e) = after(x,pred(e))  T(loc(e),x)))
Def == & (Trans e,e':Ecausl(e,e'))
Def == & SWellFounded(causl(e,e'))
Def == & (e:E
Def == & (isrcv(kind(e))
Def == & (
Def == & ((sends(lnk(kind(e)),sender(e)))[(index(e))]
Def == & (=
Def == & (msg(lnk(kind(e));tag(kind(e));val(e))
Def == & ( Msg(M))
Def == & (e:Eisrcv(kind(e))  causl(sender(e),e))
Def == & (e,e':E.
Def == & (causl(e,e')
Def == & (
Def == & ((first(e')) & causl(e,pred(e'))  e = pred(e')
Def == & ( isrcv(kind(e')) & causl(e,sender(e'))  e = sender(e'))
Def == & (e:Eisrcv(kind(e))  loc(e) = destination(lnk(kind(e))))
Def == & (e:El:IdLnk.
Def == & (loc(e) = source(l sends(l,e) = nil  Msg_sub(lM) List)
Def == & (e,e':E.
Def == & (isrcv(kind(e))
Def == & (
Def == & (isrcv(kind(e'))
Def == & (
Def == & (lnk(kind(e)) = lnk(kind(e'))
Def == & (
Def == & ((causl(e,e')
Def == & ((
Def == & ((causl(sender(e),sender(e'))
Def == & (( sender(e) = sender(e' E & index(e)<index(e')))
Def == & (e:El:IdLnk, n:||sends(l,e)||.
Def == & (e':E
Def == & (isrcv(kind(e')) & lnk(kind(e')) = l & sender(e') = e & index(e') = n)
[ESAxioms]
Def KindDeq == union-deq(IdLnkId;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq)[Kind-deq]
Def lconnects(p;i;j)
Def == lpath(p)
Def == & (||p|| = 0    i = j  Id)
Def == & (||p|| = 0    i = source(hd(p)) & j = destination(last(p)))
[lconnects]
Def lpath(p)
Def == i:(||p||-1). 
Def == destination(p[i]) = source(p[(i+1)]) & p[(i+1)] = lnk-inv(p[i])  IdLnk
[lpath]
Def IdLnkDeq == product-deq(Id;Id;IdDeq;product-deq(Id;;IdDeq;NatDeq))[idlnk-deq]

In prior sections: mb event system 1

Try larger context: EventSystems IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

mb event system 2 Sections EventSystems Doc