| Some definitions of interest. |
|
ma-compatible-decls | Def M1 ||decl M2 == 1of(M1) || 1of(M2) & 1of(2of(M1)) || 1of(2of(M2)) |
|
ma-join | Def M1 M2
Def == mk-ma(1of(M1) 1of(M2);
Def == mk-ma(1of(2of(M1)) 1of(2of(M2));
Def == mk-ma(1of(2of(2of(M1))) 1of(2of(2of(M2)));
Def == mk-ma(1of(2of(2of(2of(M1)))) 1of(2of(2of(2of(M2))));
Def == mk-ma(1of(2of(2of(2of(2of(M1))))) 1of(2of(2of(2of(2of(M2)))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1)))))) 1of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1)))))) 1of(M2))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1))))))) 1of(2of(2of(2of(2of(2of(2of(M2)))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1)))))))) 1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))) |
|
msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | Thm* MsgA Type{i'} |