| Rank | Theorem | Name |
| 4 | Thm* ltg:(IdLnk Id Type), i:Id, da1,da2:k:Knd fp-> Type.
Thm* (ltg da-outlinks(da1 da2;i))
Thm* 
Thm* (ltg da-outlinks(da1;i)) (ltg da-outlinks(da2;i)) | [da-outlinks-join] |
| cites the following: |
| 2 | Thm* P:(T  ), T':Type, f:({x:T| P(x) } T'), L:T List, x:T'.
Thm* (x mapfilter(f;P;L))  ( y:T. (y L) & P(y) & x = f(y)) | [member_map_filter] |
| 2 | Thm* eq:EqDecider(A), L:A List, x:A. deq-member(eq;x;L)  (x L) | [assert-deq-member] |
| 0 | Thm* eq:EqDecider(A), f:a:A fp-> Top, g:Top, x:A.
Thm* f g(x) ~ if x dom(f) f(x) else g(x) fi | [fpf-join-ap-sq] |
| 3 | Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a), x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom] |
| 0 | Thm* i:Id, k:Knd. has-src(i;k)  isrcv(k) & source(lnk(k)) = i | [assert-has-src] |