Rank | Theorem | Name |
6 | Thm* M1,M2:MsgA. M1 || M2  M2 || M1 | [ma-compatible-symmetry] |
cites the following: |
4 | Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a), x:A.
Thm* x dom(f g)  f g(x) = if x dom(f) f(x) else g(x) fi B(x) | [fpf-join-ap] |
3 | Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a), x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom] |
5 | Thm* B1,B2:(A Type), eq:EqDecider(A), f:a:A fp-> B1(a), g:a:A fp-> B2(a).
Thm* f f g | [fpf-sub-join-left] |
0 | Thm* eq:EqDecider(X), f,g:x:X fp-> Type, x:X. g f  (f(x)?T r g(x)?Top) | [subtype-fpf-cap-top] |
2 | Thm* ds,ds':ltg:Id fp-> Type. ds ds'  State(ds') State(ds) | [ma-state-subtype2] |
0 | Thm* eq:EqDecider(X), f,g:x:X fp-> Type, x:X. f g  (f(x)?Void r g(x)?T) | [subtype-fpf-cap-void] |