Rank | Theorem | Name |
4 | Thm* R:(Id  ), in,out:(|R| IdLnk).
Thm* ring(R;in;out)  ( L:|R| List. 0<||L|| & ( i:|R|. (i L))) | [ring-list] |
cites the following: |
1 | Thm* n: . ||upto(n)|| ~ n | [length_upto] |
0 | Thm* f:(A B), as:A List. ||map(f;as)|| = ||as||  | [map_length] |
2 | Thm* a:T List, x:T', f:(T T'). (x map(f;a))  ( y:T. (y a) & x = f(y)) | [member_map] |
0 | Thm* n,m: , f,i:Top. (f^n+m(i)) ~ (f^n(f^m(i))) | [fun_exp_add_sq] |
3 | Thm* n,i: . i<n  (i upto(n)) | [member_upto2] |