| Some definitions of interest. |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
l_before | Def x before y l == [x; y] l |
| | Thm* T:Type, l:T List, x,y:T. x before y l Prop |
|
l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
sublist | Def L1 L2
Def == f:( ||L1||  ||L2||).
Def == increasing(f;||L1||) & ( j: ||L1||. L1[j] = L2[(f(j))] T) |
| | Thm* T:Type, L1,L2:T List. L1 L2 Prop |