| Some definitions of interest. |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
l_before | Def x before y l == [x; y] l |
| | Thm* T:Type, l:T List, x,y:T. x before y l Prop |
|
l_member | Def (x l) == i:. i<||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
sublist | Def L1 L2
Def == f:(||L1||||L2||).
Def == increasing(f;||L1||) & (j:||L1||. L1[j] = L2[(f(j))] T) |
| | Thm* T:Type, L1,L2:T List. L1 L2 Prop |