Theorem | Name |
Thm* L1,L2:T List. L1 L2  ( n: (||L2||+1). L1 = firstn(n;L2)) | [firstn_is_iseg] |
cites the following: |
Thm* as,bs:T List. ||as @ bs|| = ||as||+||bs||  | [length_append] |
Thm* l:T List. ||l|| = 0  l = nil | [length_zero] |
Thm* as:A List, n:{0...||as||}. ||firstn(n;as)|| = n  | [length_firstn] |
Thm* L:T List, n:{0...||L||}. (firstn(n;L) @ nth_tl(n;L)) = L | [append_firstn_lastn] |