| Some definitions of interest. |
|
rel_implies | Def R1 => R2 == x,y:T. (x R1 y) (x R2 y) |
| | Thm* T:Type, R1,R2:(TTProp). R1 => R2 Prop |
|
rel_inverse | Def R^-1(x,y) == y R x |
| | Thm* T1,T2:Type, R:(T1T2Prop). R^-1 T2T1Prop |
|
rel_star | Def (R^*)(x,y) == n:. x R^n y |
| | Thm* T:Type, R:(TTProp). (R^*) TTProp |