| | Some definitions of interest. |
|
| fun_exp | Def f^n == primrec(n; x.x; i,g. f o g) |
| | | Thm* T:Type, n: , f:(T T). f^n T T |
|
| compose | Def (f o g)(x) == f(g(x)) |
| | | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| le | Def A B == B<A |
| | | Thm* i,j: . (i j) Prop |
|
| nat_plus | Def  == {i: | 0<i } |
| | | Thm*  Type |