| | Some definitions of interest. |
|
| compose | Def (f o g)(x) == f(g(x)) |
| | | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
| increasing | Def increasing(f;k) == i: (k-1). f(i)<f(i+1) |
| | | Thm* k: , f:( k  ). increasing(f;k) Prop |
|
| int_seg | Def {i..j } == {k: | i k < j } |
| | | Thm* m,n: . {m..n } Type |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |