Rank | Theorem | Name |
3 | Thm* n,k: , c:( n  k).
Thm* p:( k ( List)).
Thm* sum(||p(j)|| | j < k) = n
Thm* & ( j: k, x,y: ||p(j)||. x<y  (p(j))[x]>(p(j))[y])
Thm* & ( j: k, x: ||p(j)||. (p(j))[x]<n & c((p(j))[x]) = j) | [finite-partition] |
cites the following: |
0 | Thm* n: , a: . sum(a | x < n) = a n | [sum_constant] |
0 | Thm* n: , f,g:( n  ).
Thm* ( i: n. f(i) = g(i))  sum(f(x) | x < n) = sum(g(x) | x < n) | [sum_functionality] |
0 | Thm* k: , f,g:( k  ), p:( k  ).
Thm* sum(if p(i) f(i)+g(i) else f(i) fi | i < k)
Thm* =
Thm* sum(f(i) | i < k)+sum(if p(i) g(i) else 0 fi | i < k) | [sum-ite] |
2 | Thm* n: , f:( n  ), m: n.
Thm* ( x: n. x = m  f(x) = 0)  sum(f(x) | x < n) = f(m) | [singleton_support_sum] |
0 | Thm* a:T, as:T List, i: . 0<i  i ||as||  [a / as][i] = as[(i-1)] | [select_cons_tl] |