Selected Objects
| def | lang_rel | L-induced Equiv(x,y) ==  z:A*. L(z @ x)   L(z @ y) | 
| THM | lang_rel_refl |  L:LangOver(A). Refl(A*;x,y.x L-induced Equiv y) | 
| THM | lang_rel_symm |  L:LangOver(A). Sym x,y:A*. x L-induced Equiv y | 
| THM | lang_rel_tran |  L:LangOver(A). Trans x,y:A*. x L-induced Equiv y | 
| THM | lang_rel_equi |  L:LangOver(A). EquivRel x,y:A*. x L-induced Equiv y | 
| def | mn_quo_append | z@  x == z @ x | 
| THM | mn_quo_append_assoc |  R:(Alph*   Alph*   Prop). 
(EquivRel x,y:Alph*. x R y)   (  x,y,z:Alph*. (x R y)   ((z @ x) R (z @ y)))   (  z1,z2:Alph*, y:x,y:Alph*//(x R y). z1 @ z2@  y = z1@  z2@  y) | 
| def | lquo_rel | Rg(x,y) ==  z:A*. g(z@  x)   g(z@  y) | 
| THM | lquo_rel_refl |  R:(A*   A*   Prop). 
(EquivRel x,y:A*. x R y)   (  x,y,z:A*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:A*//(x R y))    ). Refl(x,y:A*//(x R y);u,v.u Rg v)) | 
| THM | lquo_rel_symm |  R:(A*   A*   Prop). 
(EquivRel x,y:A*. x R y)   (  x,y,z:A*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:A*//(x R y))    ). Sym u,v:x,y:A*//(x R y). u Rg v) | 
| THM | lquo_rel_tran |  R:(A*   A*   Prop). 
(EquivRel x,y:A*. x R y)   (  x,y,z:A*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:A*//(x R y))    ). Trans u,v:x,y:A*//(x R y). u Rg v) | 
| THM | lquo_rel_equi |  R:(A*   A*   Prop). 
(EquivRel x,y:A*. x R y)   (  x,y,z:A*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:A*//(x R y))    ). EquivRel u,v:x,y:A*//(x R y). u Rg v) | 
| THM | Rl_iff_Rg |  R:(A*   A*   Prop). 
(EquivRel x,y:A*. x R y)   (  x,y,z:A*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:A*//(x R y))    ), L:LangOver(A).
 (  l:A*. L(l)   g(l))   (  x,y:A*. (x L-induced Equiv y)   (x Rg y))) | 
| THM | mn_12 |  L:LangOver(Alph). 
Fin(Alph)   (  St:Type, Auto:Automata(Alph;St). Fin(St)  &  L = LangOf(Auto))   (  R:(Alph*   Alph*   Prop). 
 (EquivRel x,y:Alph*. x R y) c  (  g:((x,y:Alph*//R(x,y))    ). 
 Fin(x,y:Alph*//R(x,y))
  &  (  l:Alph*. L(l)   g(l))
  &  (  x,y,z:Alph*. R(x,y)   R((z @ x),z @ y)))) | 
| THM | mn_23_refinment |  L:LangOver(Alph), R:(Alph*   Alph*   Prop).
(EquivRel x,y:Alph*. x R y)   (  g:((x,y:Alph*//(x R y))    ).  l:Alph*. L(l)   g(l))
 &  (  x,y,z:Alph*. (x R y)   ((z @ x) R (z @ y)))   (  x,y:Alph*. (x R y)   (x L-induced Equiv y)) | 
| def | beq | p =  q == if p  q else   q fi | 
| THM | beq_id |  p:  . p =  p = true  | 
| THM | beq_sym |  p,q:  . p =  q = q =  p | 
| THM | beq_eq |  p,q:  . p =  q = true     p = q | 
| THM | beq_neq |  p,q:  . p =  q = false       p = q | 
| THM | assert_iff_eq |  a,b:  . (a   b)   a = b | 
| THM | mn_23_lem_0 |  P:(    Prop), n:  . (  k:{n...}. P(k)   (  i:  k. P(i)))  &  (  m:  . P(m))   (  m:  n. P(m)) | 
| THM | fin_listify | Fin(T)   (  TL:T*.  t:T. mem_f(T;t;TL)) | 
| THM | back_listify |  S:ActionSet(Alph), s:S.car.
Fin(Alph)   Fin(S.car)   (  BL:S.car*.  t:S.car. mem_f(S.car;t;BL)   (  a:Alph. S.act(a,t) = s)) | 
| THM | bool_listify |  f:(T    ). Fin(T)   (  fL:T*.  t:T. f(t)   mem_f(T;t;fL)) | 
| THM | total_back_listify |  S:ActionSet(Alph), sL:S.car*.
Fin(Alph)   Fin(S.car)   (  TBL:S.car*.  s:S.car. mem_f(S.car;s;TBL)   (  w:Alph*. mem_f(S.car;(S:w  s);sL))) | 
| THM | mn_23_lem |  R:(Alph*   Alph*   Prop). 
Fin(Alph)   (EquivRel x,y:Alph*. x R y)   Fin(x,y:Alph*//(x R y))   (  x,y,z:Alph*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:Alph*//(x R y))    ), x,y:x,y:Alph*//(x R y). Dec(x Rg y)) | 
| THM | mn_23_lem_1 |  R:(Alph*   Alph*   Prop). 
Fin(Alph)   (EquivRel x,y:Alph*. x R y)   Fin(x,y:Alph*//(x R y))   (  x,y,z:Alph*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:Alph*//(x R y))    ), x,y:x,y:Alph*//(x R y). Dec(x Rg y)) | 
| THM | nxn_plus_1_ge_0 |  n:  . n  n+1    | 
| THM | mn_23_Rl_equal_Rg |  L:LangOver(Alph), R:(Alph*   Alph*   Prop).
(EquivRel x,y:Alph*. x R y)   (  x,y,z:Alph*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:Alph*//(x R y))    ). 
 (  l:Alph*. L(l)   g(l))   x,y:Alph*//(x L-induced Equiv y) = x,y:Alph*//(x Rg y)) | 
| THM | mn_23 |  n:{1...}, A:Type, L:LangOver(A), R:(A*   A*   Prop).
Fin(A)   (EquivRel x,y:A*. x R y)   (  n ~ (x,y:A*//(x R y)))   (  x,y,z:A*. (x R y)   ((z @ x) R (z @ y)))   (  g:((x,y:A*//(x R y))    ).  l:A*. L(l)   g(l))   (  m:  .  m ~ (x,y:A*//(x L-induced Equiv y)))  &  (  l:A*. Dec(L(l))) | 
| THM | mn_31 |  L:LangOver(Alph). 
Fin(Alph)   Fin(x,y:Alph*//L-induced Equiv(x,y))  &  (  l:Alph*. Dec(L(l)))   (  St:Type, Auto:Automata(Alph;St). Fin(St)  &  L = LangOf(Auto)) |