quot 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def Prop == Type

is mentioned by

Thm* E:(TTProp). 
Thm* (EquivRel x,y:TE(x,y))
Thm* 
Thm* (x,y:T. Dec(E(x,y)))  (u,v:x,y:T//E(x,y). Dec(u = v))
[decidable__quotient_equal]
Thm* E:(TTProp). 
Thm* (x,y:T. Dec(E(x,y)))  (f:(TT). x,y:T. (x f y E(x,y))
[dec_iff_ex_bvfun]
Thm* E:(TTProp). 
Thm* (EquivRel x,y:TE(x,y))
Thm* 
Thm* (F:((x,y:T//E(x,y))Prop). 
Thm* ((w:x,y:T//E(x,y). SqStable(F(w)))
Thm* (
Thm* (((z:x,y:T//E(x,y). F(z))  (z:TF(z))))
[all_quot_elim]
Thm* E:(TTProp). 
Thm* (EquivRel x,y:TE(x,y))  (a,b:Ta = b  x,y:T//E(x,y E(a,b))
[quot_elim]
Thm* E:(TTProp). (EquivRel x,y:TE(x,y))  T  (x,y:T//E(x,y))[quotient_qinc]
Thm* T:Type, E:(TTProp). (EquivRel x,y:TE(x,y))  x,y:T//E(x,y Type[quotient_wf]

In prior sections: core well fnd int 1 bool 1 rel 1

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

quot 1 Sections StandardLIB Doc