Definitions rat 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ratDef  == 
Thm*   Type
nat_plusDef  == {i:| 0<i }
Thm*   Type
qaddDef a +q b == (a.numb.den+b.numa.den)/(a.denb.den)
Thm* p,q:p +q q  
qdenomDef q.den == 2of(q)
Thm* q:q.den  
qnumDef p/q == <p,q>
Thm* n:d:n/d  
qnumerDef q.num == 1of(q)
Thm* q:q.num  

About:
pairproductintnatural_numberaddmultiplyless_than
setuniversememberall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions rat 1 Sections StandardLIB Doc