Thms relation autom Sections AutomataTheory Doc

NOTE: i is just a notation for {0..i}

int_seg Def {i..j} == {k:| i k < j}

Thm* m,n:. {m..n} Type

one_one_corr Def A ~ B == f:(AB), g:(BA). InvFuns(A; B; f; g)

Thm* (A ~ B) Prop

decidable Def Dec(P) == P P

Thm* Dec(A) Prop

equiv_rel Def compound EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)

Thm* E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop

int_upper Def {i...} == {j:| ij}

Thm* n:. {n...} Type

lelt Def i j < k == ij & j < k

inv_funs Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id

Thm* f:(AB), g:(BA). InvFuns(A; B; f; g) Prop

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* (A) Prop

trans Def basic Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)

Thm* E:(TTProp). Trans x,y:T. E(x,y) Prop

sym Def basic Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)

Thm* E:(TTProp). Sym x,y:T. E(x,y) Prop

refl Def basic Refl(T;x,y.E(x;y)) == a:T. E(a;a)

Thm* E:(TTProp). Refl(T;x,y.E(x,y)) Prop

tidentity Def Id == Id

Thm* Id AA

compose Def (f o g)(x) == f(g(x))

Thm* f:(BC), g:(AB). f o g AC

identity Def Id(x) == x

Thm* Id AA