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1 Introduction

1.1 Specification and Programming

EventML is a functional programming language in the ML family, closely related to Classic ML [GMW79,
CHP84, KR11]. It is also a language for coding distributed protocols (such as Paxos [Ren11]) using high
level combinators from the Logic of Events (or Event Logic) [Bic09, BC08], hence the name “EventML”.
The Event Logic combinators are high level specifications of distributed computations whose properties
can be naturally expressed in Event Logic. The combinators can be formally translated (compiled) into
the process model underlying Event Logic and thus converted to distributed programs. The interactions
of these high level distributed programs manifest the behavior described by the logic. EventML can thus
both specify and execute the processes that create the behaviors, called event structures, arising from
the interactions of the processes.

Since EventML can directly specify computing tasks using the event combinators it can carry out part
of the task normally assigned to a theorem prover, formal specification. EventML can also interact with
a theorem prover, presently Nuprl [CAB+86, Kre02, ABC+06] (a theorem prover based on a constructive
type theory called Computational Type Theory (CTT) [CAB+86] and on Classic ML), which can express
logical properties and constraints on the evolving computations as formulas of Event Logic and prove
them. From these proofs, a prover can create correct-by-construction process terms which EventML can
execute. Thus EventML and Nuprl can work together synergistically in creating a correct by construction
concurrent system. EventML could play the same role with respect to any theorem prover that implements
the Logic of Events. Thus EventML provides a new paradigm for creating correct distributed systems,
one in which a systems programmer can design and code a system using event combinators in such a way
that a theorem prover can easily express and prove logical properties of the resulting computations. To
EventML, the event combinators have a dual character. They have the logical character of specifications
and the computational character of producing event structures with formally guaranteed behaviors.

1.2 Interaction with theorem provers

EventML was created to work in cooperation with an interactive theorem prover and to be a key component
of a Logical Programming Environment (LPE) [ABC+06].

In one direction, EventML can import logical specifications from the prover as well as event class
specifications and the process code that realizes them. In the present mode of operation, EventML docks
with the Nuprl prover to obtain this information.

In the other direction, EventML can be used by programmers to specify protocols using event logic
combinators. Following the line of work in which Nuprl was used to reason about the Ensemble sys-
tem [Hay98, BCH+00, KHH98, LKvR+99] (coded in OCaml [Ler00]), EventML, by docking to Nuprl,
provides a way to reason about (and synthesize) many distributed protocols. Thanks to its construc-
tive logic, its expressiveness, and its large library, Nuprl is well suited to reason about distributed sys-
tems [BKR01]. But in principle EventML can connect to any prover that implements Event Logic and our
General Process Model [BCG10]. Given an EventML specification, the Nuprl prover can: (1) synthesize
process code, and (2) generate the inductive logical form of the specification which is used to structure
logical description of the protocols and the system.

2 Event Logic

2.1 Events, event orderings, and event classes

The Logic of Events [Bic09, BC08] is a logic inspired by the work of Winskel on event structures [Win88],
developed to deal with: (1) events; (2) their spatial locations; and (3) their “temporal locations,” repre-
sented as a well-founded partial ordering of these events (causal order). An event is triggered by receipt of
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a message; the data of the message body is called primitive information of the event. The Logic of Events
provides ways to describe events by, among other things giving access to their associated information.

An event ordering is a structure consisting of: (1) a set of events, (2) a location function loc that
associates a location with each event, (3) an information function info that associates primitive infor-
mation with each event, and (4) a well-founded causal ordering relation on events < [Lam78]. An event
ordering represents a single run of a distributed system.

A basic concept in the Logic of Events is an event class [Bic09], which effectively partitions the events
of an event ordering into those it “recognizes” and those it does not, and associates values to the events it
recognizes. Different classes may recognize the same event and assign it different values. For example, one
class may recognize the arrival of a message and associate it with its primitive information, the message
data. Another class may recognize that, in the context of some protocol, the arrival of that message
signifies successful completion of the protocol and assign to it a value meaning “consensus achieved.”
We specify a concurrent system in EventML by defining event classes that appropriately classify system
events.

Event classes have two facets: a programming one and a logical one. On the logical side, event
classes specify information flow on a network of reactive agents by observing the information computed
by the agents when events occur, i.e., on receipt of messages. On the programming side, event classes
can be seen as processes that aggregate information in an internal state from input messages and past
observations, and compute appropriate values for them.

Formally, an event class X is a function whose inputs are event ordering and an event, and whose
output is a bag of values (observations). If the observations are of type T , then the class X is called an
event class of type T . The associated type constructor is Class(T ) = EO → E → Bag(T ), where EO is
the type of event orderings and E the type of events.

Expressions denoting events or event orderings do not occur in EventML programs; the types EO and
E are not EventML types. We will refer to them when explaining the semantics of programs or reasoning
about them. In particular, we will speak about the bag of values returned by a class (at some event) and
will reason about the event class relation: we say that the class X observes v at event e (in an event
ordering eo), and write v ∈ X (e), if v is a member of (X eo e). In our discussions, eo will be clear from
context, so our notation omits it. If the bag of return values is nonempty we say that event e is in the
class X , and that e is an X -event. If an event class always returns either a singleton bag or an empty
bag, we call it a single-valued class.

Event classes are ultimately defined from one kind of primitive event class (a base class) using a
small number of primitive class combinators—though users can define new combinators, and we supply
a useful library of them. These primitives, and a variety of useful defined combinators are introduced in
the examples of section 3. Their definitions are gathered together in section 7.

2.2 Inductive logical forms

The inductive logical form of a specification is a first order formula that characterizes completely the
observations (the responses) made by the main class of the specification in terms of the event class
relation. The formula is inductive because it typically characterizes the responses at event e in terms
of observations made by a sub-component at a prior event e ′ < e. Such inductive logical forms are
automatically generated in Nuprl from event class definitions, and simplified using various rewritings.
From an inductive logical form we can prove invariants of the specification by induction on causal order.

3 Simple examples

We guide the reader through the features of this new programming/specification language with a series
of examples.
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Figure 1 Ping-pong protocol

s p e c i f i c a t i o n ping pong

(∗ −−−−−− Imported Nuprl d e f i n i t i o n s −−−−−− ∗)
import bag−map

(∗ −−−−−− Protoco l parameters −−−−−− ∗)
parameter p : Loc
parameter l o c s : Loc Bag

(∗ −−−−−− I n t e r f a c e −−−−−− ∗)
input s t a r t : Loc
i n t e r n a l ping : Loc
i n t e r n a l pong : Loc
output out : Loc

(∗ −−−−−− Clas se s −−−−−− ∗)
c l a s s ReplyToPong ( c l i e n t , l o c ) =

l e t F l = i f l = l o c then { out ’ s end c l i e n t l o c } e l s e {}
in Once(F o pong’base ) ; ;

c l a s s SendPing ( , l o c ) = Output (\ l .{ p ing ’ s end l o c l }) ; ;
c l a s s Handler ( c , l ) = ( SendPing ( c , l ) | | ReplyToPong ( c , l ) ) ; ;

c l a s s Delegate = (\ .\ c l i e n t . bag−map (\ l . ( c l i e n t , l ) ) l o c s ) o s t a r t ’ b a s e ; ;
c l a s s P = Delegate >>= Handler ; ;

c l a s s ReplyToPing = (\ l o c .\ l .{ pong’send l l o c }) o p ing ’base ; ;

(∗ −−−−−− Main c l a s s −−−−−− ∗)
main P @ {p} | | ReplyToPing @ l o c s

3.1 Ping-pong

Consider the following problem: a client wants to run some computation that involves a certain collection
of nodes, but first wants to know which of them are still alive. To learn that, the client initiates the
(trivial) ping-pong protocol, which will “ping” the nodes and tell the client which nodes respond to the
ping. (This simple protocol does not deal with the fact that nodes can fail after responding.)

An EventML specification requires only that the declaration of an identifier precede its use. For
readability, however, a specification is typically presented in the following order: name; imports (from
a library); parameters; messages; variables; class declarations. Most of these parts are optional. Fig.1
presents the full EventML specification of the protocol.

Specification name
The keyword specification marks a specification’s name:

s p e c i f i c a t i o n p ing pong

Imports
EventML provides a library file that is a snapshot of Nuprl’s library. The types in EventML are a

subset of the types in Nuprl. Accordingly, any library function whose type is an EventML type can be
used in EventML program. An import declaration makes library functions visible:

import bag−map
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The bag−map operation applies a function, pointwise, to all elements of a bag:

bag−map f {a, b, . . . } = {(f a), (f b), . . . }

Parameters
To avoid hardwiring the locations of any participants into the specification, we declare two parameters:

p is the location to which clients send their requests; locs is a (non-repeating) bag containing the locations
of the nodes to be checked. To execute the protocol we will instantiate those parameters as real physical
machine addresses.1 A client will identify will include its location in the request it sends, as a return
address for replies.

paramete r p : Loc
paramete r l o c s : Loc Bag

Messages and directed messages
The ping-pong protocol uses four kinds of messages:

i n p u t s t a r t : Loc
i n t e r n a l p ing : Loc
i n t e r n a l pong : Loc
output out : Loc

Each of these lines declares a message kind. The elements of a message declaration

• identify its category, using one of the keywords input, output, internal

input messages are generated by sources outside the protocol; output messages are generated by the
protocol and consumed by outside sources; internal messages are produced and consumed (only)
by the protocol.

• provide a (user-chosen) name for the message kind (in this case, start , ping, pong, or out)

• specify the type of the message body (in this case, the contents of every message exchanged in the
protocol is a location).

The body of a ping or pong message will not, in fact, be an arbitrary location; it must be one of the
locations in locs . However, we cannot formulate that more precise declaration of these message kinds
because EventML does not allow subtype definitions (though Nuprl does).

Our discussions will use the notation [ start : x ] to denote a start message with body x , etc. 2

A directed message is a pair consisting of a location (the addressee) and a message. Our discussions
will use the notation (loc,msg) to denote the directed message that addresses messagemsg to location loc.
Directed messages have a special semantics. When a main class (see below) produces a bag of directed
messages, a messaging system attempts to deliver them—i.e., given the directed message (loc,msg), the
messaging system attempts to deliver msg to location loc. We reason about the effect of a protocol under
assumptions about message delivery. For present purposes, we assume that all messages are eventually
delivered at least once, but make no assumption about transit times or the order in which messages are
delivered.

Message declarations automatically introduce certain operations and event classes:

1As a logical matter, an EventML program may have parameters of any type definable in EventML. To compile an
EventML specification, a developer must supply a configuration file that instantiates the parameters. See section 8.

2For technical reasons, the Nuprl model represents a message as a triple: a list of tokens acting as a message header, the
message body, and the type.
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• Every declaration of an input or internal message kind foo automatically introduces a base class,
denoted foo’base, an event class that recognizes the arrival of a foo message and observes its body
(and recognizes messages of no other kind).

More precisely, the arrival of a message [foo : msg ] at location l , causes an event e to happen at
l ; and when e occurs, foo’base observes the content of that message. (Equivalently, we say that
foo’base returns {msg}; or we say that v ∈ foo’base(e) if and only if v = msg .)

• Every declaration of an output or internal message kind foo automatically introduces functions
foo’send and foo’broadcast that are used to construct directed messages or bags of them. (These
are the only way to construct such messages—thus, we assume that the messages they construct
cannot be forged.)

If l is a location and msg is of the appropriate type

(foo’send l msg) = (l, [foo : m])

the directed message for sending [foo : m] to l .

If the li are locations and msg is of the appropriate type

foo’broadcast {l1, . . . , ln} msg = {(l1, [foo : msg]), . . . , (ln, [foo : msg])}

a bag of directed messages containing a [foo : msg ] message for each location li .

Ultimately, all EventML programs are defined by applying combinators to base classes, which are the
only primitive classes.3 We assume that any computing system on which we wish to implement EventML
provides the means to implement base classes.

The protocol
The ping-pong protocol proceeds as follows:

1. It begins when a message of the form [ start : client ] arrives at location p. (Replies to this message
will be sent to client .)

2. A supervisory class, P, will then spawn several classes at location p. For each l in locs , it spawns
the class Handler(client ,l), which will handle communications with node l .

3. Handler(client , l) sends a [ping:p] message to the node at location l and waits for a response.

4. On receipt of a [ping:p] message, the ReplyToPing class at node l sends a [pong : l ] message back to
p.

5. On receipt of this [pong : l ] message, Handler(client ,l) sends an [out : l ] message to client and
terminates.

Intuitively, Handler is a parameterized class—but, because EventML is a higher-order language, we need
no special generic or template construct in order to express that. An event class parameterized by
values of type T is simply a function that inputs values of type T and outputs event classes.

Class combinators
Our specification uses the following class combinators, all of them provided in the standard library:

• Output(f): If f : Loc → Bag(T ), Output(f) is the class that, in response to the first event it sees at
location l , returns the bag of values (f l); it then terminates.

• X || Y: This event class is the parallel composition of classes X and Y. It recognizes events in either
X or Y, and observes a value iff either X or Y observes it. The parallel combinator is a primitive.

3Technically, this is not quite true: It would be possible to define an event class in the Nuprl library and import it into
an EventML program.
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• X >>= Y: This is the delegation, or bind, combinator.4 If X is an event class and Y is a function
that returns event classes, X >>= Y is the event class that, whenever it recognizes an event, acts
as follows: For each v ∈ X(e), it “spawns” the class (Y v). (Events in this spawned class will occur
at the same location as e and causally after it. We temporarily defer a more precise discussion of
its meaning.) Delegation is primitive.

• f o X: This is well typed if f is a function that takes as arguments a location and a value, and returns
a bag. It acts as follows (for the case of a single-valued class): when v ∈ X(e)and NUPRLevent has
location loc, f o X returns (f loc v). This simple composition combinator is “almost primitive.” It
is defined in terms of a primitive combinator that is somewhat more expressive but rarely, if ever,
used. (This combinator is described in more detail in the discussion, below, of class ReplyToPong.)

• Once(X): This class responds only to the first X-event at any location and, at such an event, behaves
like X. That is, v ∈ (Once(X))(e) iff v ∈ X(e) and there was no X -event prior at location loc(e)
prior to e. Once is a defined combinator that our compiler treats specially, because it knows that
the process Once(X) can be killed and cleaned up after it has recognized one event.

• X@b: This is the restriction of X to the locations in the bag b: v ∈ (X@b)(e) iff e occurs at a
location in b and v ∈ X(e). Operationally, it means “run the program for X at each location in b.”

The “main” class
The keyword main identifies the event class that compilation of an EventML specification will actually

implement (given appropriate instantiations of its parameters). The main program of the ping-pong
program is the parallel composition of the supervisory class P running at location p and ReplyToPing
running at all the locations in locs :

main P @ {p} | | ReplyToPing @ l o c s

Spawning of handlers (delegation to sub-processes)
The supervisory class P uses the delegation combinator to spawn a handler for each request.

c l a s s P = De l ega t e >>= Hand le r ; ;

We will define Delegate so that, in response to [ start : x ], returns the bag {(x, l1), (x, l2), . . .}, where the li
are the elements of locs . Each element of this bag is the initial data needed by one of the spawned classes.
The effect of Delegate >>= Handler is therefore to spawn a class (Handler (client , li)) for each i. Notice
how the types match up: Delegate is an event class of type Loc ∗ Loc; Handler will be a function mapping
values of type Loc ∗ Loc to event classes of type directed message. Therefore Delegate >>= Handler is
an event class that returns (bags of) directed messages.

Consider the definition of Delegate, which we’ve rewritten by introducing the locally defined function
f.

c l a s s De l ega t e =
l e t f = \ c l i e n t . bag−map (\ l . ( c l i e n t , l ) ) l o c s i n

(\ . f ) o s t a r t ’ b a s e ; ;

The “ ” is used, as in ML, as the name of a variable whose value is ignored.
When a [ start : x ] message arrives, we want Delegate to return the bag

f x = {〈x, l1〉, 〈x, l2〉, . . .}

where locs = {l1, l2, . . .}. Intuitively, the simple composition operator transforms observed values by
applying a function. However, the function we use is not f but \ . f. The reason is that the location

4The class type forms a monad and delegation is the bind operator of that monad.
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of an event is also observable; accordingly, we define “g o X” so that that g takes two arguments: the
location of the event and a value observed by X. It so happens that in this case, the location is ignored.
We give a precise definition of this combinator at the end of this section.
Handler

Interactions betwen the Handler classes spawned by P and the nodes carry out steps (3)–(5) of the
protocol. The input to the higher-type function Handler is a pair of locations: the client location and the
location to ping. The resulting handler is the parallel composition of two other parameterized classes:
SendPing, which executes step (3) of the protocol, and ReplyToPong, which executes step (5).

c l a s s Hand l e r ( c , l ) = ( SendPing ( c , l ) | | ReplyToPong ( c , l ) ) ; ;

By the definition of the parallel combinator, Handler (c, l) computes everything that either SendPing (c, l)
or ReplyToPong (c, l) does.

SendPing (c, l) is in charge of only one task: send a ping message to l .

c l a s s SendPing ( , l o c ) = Output (\ l .{ p i n g ’ s e nd l o c l }) ; ;

By the definitions of Output and ping’send given above, an instance of SendPing(client, loc) running at
location l will respond to the first event it sees at l by directing a ping message with body l to location
loc; it will then terminate. The recipient will interpret l as a return address.

ReplyToPong (client , loc) waits for a pong message from the node at location loc and, on receiving
one, sends [out : l ] to location client . It therefore responds to a subset of the events recognized by the
base class pong’base: not every pong message, but only those sent from loc, i.e., those whose message
body is loc. If v ∈ pong’base(e), ReplyToPong generates an output by applying the following function to
v :

\ l . i f l = l o c then { ou t ’ s e nd c l i e n t l o c } e l s e {}

and then terminates. This is the essence of the locally defined function F in

c l a s s ReplyToPong ( c l i e n t , l o c ) =
l e t F l = i f l = l o c then { ou t ’ s e nd c l i e n t l o c } e l s e {}
i n Once (F o pong ’base ) ; ;

Once again, because the response doesn’t depend on the location at which the input event occurred, the
first argument to F is a dummy.

ReplyToPing
ReplyToPing defines a program that must run at each node that will be pinged.

c l a s s ReplyToPing = (\ l o c .\ l .{ pong ’ send l l o c }) o p i n g ’ b a s e ; ;

This time the transformation function makes use of the initial location argument. When the class
((\ loc .\ l .{pong’send l loc}) o ping’base), running at location s , receives [ping : l ] it sends [pong : s ] to
location l .

Programmable classes
No base class can be a main program. For example, start’base recognizes the arrival of every start

message at any node whatsoever; but this abstraction cannot be implemented: we cannot install the
necessary code on every node that exists (whatever that may mean). However, start’base is locally
programmable in the sense that we can implement any class that results from restricting it to a finite
set of locations. All base classes are locally programmable and all primitive class combinators preserve
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the property of being locally programmable, so every class definable in an EventML program is locally
programmable.5

A class is programmable if it is equivalent to the restriction of a locally programmable class to a
finite set of locations. Declaring a class as a main program incurs the obligation to prove that it is
programmable. Using the “ @ ” combinator, and the fact that primitive combinators also preserve
the property of being programmable, we can automatically prove that any idiomatically defined main
program is programmable.

Simple composition, in detail
One can apply simple composition to any number of classes. Given n classes X1 , . . . , Xn , of types

T1 , . . . , Tn respectively, and given a function F of type Loc → T1 → · · · → Tn → Bag(T ), one can
define a class C : Class(T ) by C = F o (X1 , · · · ,Xn).

Intuitively, C processes an event e as follows. The first argument supplied to F is the location at
which e occurs; the successive arguments are, in order, the values observed by the classes Xi at e; and C
returns the bag that F computes from these inputs. That description leaves it unclear what to do if, for
some i, e is not an Xi -event, or what to do if for some i, Xi produces a bag with more than one element.

Here is a more precise formulation. C produces (observes) the element v of type T iff each class Xi

observes an element vi of type Ti at event e and v = f loc(e) v1 · · · vn . Therefore, a C -event must be
an Xi -event for all i ∈ {1, . . . , n}. If for some i ∈ {1, . . . , n}, Xi does not observe anything at event e,
then neither does C .

3.2 Ping-pong with memory

We now make our ping-pong protocol a bit more interesting by adding some memory to the main process.
We introduce a new integer parameter, threshold ; instead of sending an [out : l ] message to the client
whenever node l responds to a pong, we wait until a total of threshold responses have been received,
and then notify the client by sending a message [out : [l1 ; l2 ; . . . ; lthreshold ]], whose body is the list of all
responders. We modify the design of ping-pong by adding one more (parameterized) class, a memory
module: Instead of sending an out message directly to a client, ReplyToPong will send an alive message
to an appropriate memory module, which will accumulate responses and send an out message to the
client once it has received enough of them.

And we add one more twist. A client who sends multiple start messages will receive multiple out
messages in reply and may need to know what request any out message is replying to. So the client will
attach an integer id (we will call it a request number) to its start messages; that request number will be
included in the out message it receives. The request numbers need not be globally unique identifiers, so
we will also arrange for the supervisory class P to attach a global id (which we will call a round) to each
request that it receives. The protocol proceeds as follows:

1. P receives a [ start : 〈client, req num〉] message from the location client .

2. P generates a unique id, round , for the request and spawns the following:

• for each node l in locs , a class Handler(l , round)

• a memory module (Mem client req num round)

3. Handler(l ,round) sends a [ping:〈p, round〉] message to the node at location l and waits for a reply.

4. On receipt of [ping:〈p, round〉] the ReplyToPing class at node l sends a [pong:〈 l , round〉] message to
p. Handler classes respond to pong messages.

5. On receipt of [pong:〈l, round〉], the class Handler(l , round) sends an [ alive :〈l, round〉] message to
itself (location p). Mem classes respond to alive messages.

5This needs a qualification: One could define a class in Nuprl that is not locally programmable and then import it from
the Nuprl library; one could similarly introduce a pathological combinator. If that is done, the first step of compilation—
verifying that the main program is programmable—would fail.
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Figure 2 Ping-pong protocol with memory

s p e c i f i c a t i o n m ping pong

(∗ −−−−−− Imported Nuprl d e c l a r a t i o n s −−−−−− ∗)
import bag−map deq−member l ength

(∗ −−−−−− Parameters −−−−−− ∗)
parameter p : Loc
parameter l o c s : Loc Bag
parameter th re sho ld : Int

(∗ −−−−−− I n t e r f a c e −−−−−− ∗)
input s t a r t : Loc ∗ Int
i n t e r n a l ping : Loc ∗ Int
i n t e r n a l pong : Loc ∗ Int
i n t e r n a l a l i v e : Loc ∗ Int
output out : Loc L i s t ∗ Int

(∗ −−−−−− Clas se s −−−−−− ∗)
c l a s s ReplyToPong p =

l e t F s l f q = i f p = q then { a l i v e ’ s e n d s l f p} e l s e {}
in F o pong’base ; ;

c l a s s SendPing ( loc , round ) = Output (\ l .{ p ing ’ s end l o c ( l , round )} ) ; ;
c l a s s Handler p = SendPing p | | ReplyToPong p ; ;

c l a s s MemState round =
l e t F ( l o c : Loc , r : Int ) L =

i f r = round & ! ( deq−member ( op =) l o c L) then { l o c . L} e l s e {L}
in F o ( a l i v e ’ b a s e , Pr io r ( s e l f ) ? { [ ] } ) ; ;

c l a s s Mem c l i e n t req num round =
l e t F L = i f l ength L >= thresho ld then { out ’ s end c l i e n t (L , req num)} e l s e {}
in F o (MemState round ) ; ;

c l a s s Round ( c l i e n t , req num , round ) =
(Output (\ . l o c s ) >>= \ l . Handler ( l , round ) )

| | Once(Mem c l i e n t req num round ) ; ;

c l a s s PState =
l e t F l o c ( c l i e n t , req num ) ( , , n ) = {( c l i e n t , req num , n + 1)}
in F o ( s t a r t ’ b a s e , Pr io r ( s e l f ) ? (\ l . { ( l , 0 , 0 ) } ) ) ; ;

c l a s s P = PState >>= Round ; ;

c l a s s ReplyToPing = (\ l o c . \ ( l , round ) . { pong’send l ( loc , round )} ) o p ing ’base ; ;

(∗ −−−−−− Main c l a s s −−−−−− ∗)
main P @ {p} | | ReplyToPing @ l o c s

6. When (Mem client req num round) has seen alive messages from threshold distinct locations, it
sends to location client an appropriate out message tagged with req num.

Fig. 2 provides the full specification of this protocol. Most of it is a routine adaptation of the ping-pong
specification. The novelty lies in the introduction of the event classes PState and Mem that act like state
machines. We will describe these in detail.
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Imported library functions
The specification imports two Nuprl functions.

• length, which computes the length of a list

• deq−member, which checks whether an element belongs to a list

To apply this to lists of type T we must also supply an operation that decides equality for elements
of T . That operation is a parameter to the membership test; thus, we write (deq−member eq y lst)
to compute the value of the boolean “y is a member of list lst , based on the equality test eq.”

Class combinators
The specification uses the three remaining primitive combinators:

• Prior (X): Event e belongs to Prior (X) if some X-event has occurred at loc(e) strictly before event
e; if so, its value is the value returned by X for the most recent such X-event. Once an X-event has
occurred at location l , all subsequent events at l are Prior (X)-events.

• X?f: For any class X of type T, and any function f : Loc → Bag(T), X?f has the following meaning:

v ∈ (X?f)(e) iff

{

v ∈ X(e) if e is an X-event

v ∈ f(loc(e)) otherwise

If (f l) is nonempty, then all events at location l are (X?f)-events.

• self : The underlying semantic model of EventML has powerful operators for defining event classes
by recursion, including mutual recursion. However, EventML itself currently provides only a simple
recursion scheme, which has been adequate for all the practical examples we have considered. The
keyword self can occur only in contexts such as

c l a s s X = G ( P r i o r ( s e l f )? f )

where, instead of being simply an argument to a function, Prior ( self )?f could be a subterm of a
more general expression. As a result of this definition X satisfies the fix-point equation

X = G ( P r i o r (X)? f )

that specifies the value of X at any event e in terms of its value at the immediately prior X-events;
or, if there is no prior X-event, in terms of f(loc(e)). Examples will make this clear.

P and PState
Class P uses PState to generate a unique round number for each request, and passes that to Round,

which in turn performs step 2 of the protocol. The definition of PState is recursive.

c l a s s PState =
l e t F l o c ( c l i e n t , req num ) ( , , n ) = {( c l i e n t , req num , n + 1)}
i n F o ( s t a r t ’ b a s e , P r i o r ( s e l f ) ? (\ l . { ( l , 0 , 0 ) } ) ) ; ;

This defines a state machine as follows:

• start’base -events trigger change of state.

• The state type of PState is (Loc ∗ int ∗ int ). The state components represent, respectively: the
client whose request has caused the state change, the request number assigned by the client, and
the most recent round number generated by PState.

• For any start’base -event e, v ∈ PState(e) iff v is the state of PState after it has processed event e.
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• The initial value of the state at location l is (l, 0, 0).

The first two components of this initial state are dummy values.

• The transition function at location l is (F l).

If [ start :〈client, req num〉] arrives in state (l, r, n), the new state is (client , req num, n+ 1).

As an exercise, we unroll some instances of the definition. By definition, PState satisfies the recursion
equation:

PState =
l e t F l o c ( c l i e n t , req num ) ( , , n ) = {( c l i e n t , req num , n + 1)}
i n F o ( s t a r t ’ b a s e , P r i o r ( PState )? (\ l . { ( l , 0 , 0 ) } ) ) ; ;

Note first that, because the return value of

\ l . { ( l , 0 , 0 )}

is always nonempty, every event belongs to the class

P r i o r ( PState )? (\ l . { ( l , 0 , 0 ) } )

It follows from this that the PState-events are precisely the start’base -events. (The locally defined
function F always returns a nonempty result; therefore, for any A and B, the events in F o (A,B) will be
those events that are both A-events and B-events.)

Suppose that event e1, the arrival of the message [ start :〈c1, r1〉], is the first PStart-event occurring at
location l . Call it event e1. At e1, PState returns

F l (c1, r1) (l, 0, 0) = {(c1, r1, 1)}

Suppose e2, the arrival of the message [ start :〈c2, r2〉], is the next PStart-event occurring at location l .
At e2, PState returns

F l (c2, r2) (cl, r1, 1) = {(c2, r2, 2)}

The key point is that the argument supplied to F by

P r i o r ( PState )? (\ l . { ( l , 0 , 0 ) } )

is the value of the state when the incoming message arrives—which is the value returned as a result of
the previous start message—or, if there hasn’t been one, (l , 0, 0).

Mem and MemState
The state machine PState maintains an internal state and after an input event returns a singleton

bag containing its new state. It is, essentially, a Moore machine.
A memory module will maintain an internal state (listing the nodes from which alive messages have

been received); it outputs not its state but an out message—and not every change of state will cause an
output. A simple way to achieve this is to define two classes: MemState, like PState, simply accumulates
a state and makes it visible; Mem observes MemState and generates an output when appropriate.

The class (MemState round) accumulates and makes visible the internal state:

c l a s s MemState round =
l e t F ( l o c : Loc , r : I n t ) L =

i f r = round & ! ( deq−member ( op =) l o c L )
then { l o c . L}
e l s e {L}

i n F o ( a l i v e ’ b a s e , P r i o r ( s e l f )?{\ l . [ ] } ) ; ;
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An input event to this state machine is the arrival of an alive message. The state is a list of locations,
initially empty; it contains the distinct locations from which alive messages have been received for round
number round , and ignores all other messages. When a message arrives with body (loc, r) the new state is
determined as follows: if the message’s round number is round , and loc is not yet on the list, prepend loc
to the state; otherwise, no change. (Because round numbers are globally unique, this class can perform
its function without knowing either the client who initiated the request or the request number assigned.)

Notation: Some of the formal arguments to the function F are labeled with types: ( loc :Loc,r : Int ),
rather than (loc , r). It is always legal to label patterns or expressions with types; and, in some situations,
the type inference algorithm needs the extra help. The use of labels can be eliminated by using variable
declarations, which are introduced in section 5.

Notation: Recall that the first argument to deq−member must be an equality operation. In the
term “deq−member (op =) loc L” the equality operation is denoted by “(op =).” In general, “(op g)”
means “g used as a binary infix operator.”

When (Mem client req num round) sees that the state of (MemState round) has grown to a list of
length threshold it signals the client.

c l a s s Mem c l i e n t req num round =
l e t F L = i f l e n g t h L >= th r e s h o l d

then { ou t ’ s e nd c l i e n t (L , req num )}
e l s e {}

i n F o (MemState round ) ; ;

3.3 Leader election in a ring

Many distributed protocols require that a group of nodes choose one of them, on the fly, as a leader.
Here is a simple strategy for doing that under the assumptions that:

• the nodes are arranged in a ring (each node knowing its immediate successor)

• each node has a unique integer id

Any node may start an election by sending its own id to its immediate successor (a proposal). With
one exception, a node that receives a proposal will forward to its successor the greater of the following
two values: {the proposal it received, its own id}. The exception occurs if (and only if) a node receives
in a proposal its own id. In that case, the node stops forwarding messages and declares itself elected. If
messages are delivered reliably and no nodes fail, this protocol will always succeed in electing the node
with the greatest id.

Fig. 3 presents our specification of a slightly more sophisticated protocol. We add an interface that
makes it possible for some external party to reconfigure the ring—e.g., if it believes that some nodes have
failed. Informally, we call the intervals between reconfigurations epochs (setting aside the vagueness of
“between” in a distributed setting). We number the epochs with positive integers—using 0 to mean “no
epoch has started at this node.”

The inputs to the protocol are of two kinds:

• a config message tells a node to begin a new epoch and stipulates which node is, in the new epoch,
its immediate successor in the ring;

• a choose message contains the number of an epoch, and asks for an election in that epoch.

The outputs of the protocol are leader messages sent to some designated client. The body of a leader
message contains an epoch number and the id of the leader elected in that epoch.

Parameters to the protocol are

• nodes : Loc Bag – the nodes from which a leader must be chosen
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Figure 3 Leader election in a ring

s p e c i f i c a t i o n l e a d e r r i n g

(∗ −−−−−− Parameters −−−−−− ∗)
parameter nodes : Loc Bag
parameter c l i e n t : Loc
parameter uid : Loc → Int

(∗ −−−−−− Imported Nuprl d e c l a r a t i o n s −−−−−− ∗)
import imax

(∗ −−−−−− Type fun c t i on s −−−−−− ∗)
type Epoch = Int

(∗ −−−−−− I n t e r f a c e −−−−−− ∗)
input con f i g : Epoch ∗ Loc (∗ To inform a node o f i t s Epoch and neighbor ∗)
output l e ad e r : Epoch ∗ Loc (∗ Locat ion o f the l e ad e r ∗)
input choose : Epoch (∗ Star t the l e ad e r e l e c t i o n ∗)
i n t e r n a l propose : Epoch ∗ Int (∗ Propose a node as the l e ad e r o f the r ing ∗)

(∗ −−−−−− Clas se s −−−−−− ∗)
l e t dumEpoch = 0 ; ;

c l a s s Nbr =
l e t F ( epoch , succ ) ( epoch’ , s u c c ’ ) =

i f epoch > epoch ’
then {( epoch , succ )}
e l s e {( epoch’ , s u c c ’ )}

in F o ( c on f i g ’ b a s e , Pr io r ( s e l f ) ? (\ l . { ( dumEpoch , l )} ) ) ; ;
c l a s s PrNbr = Pr ior (Nbr )? (\ l . { ( dumEpoch , l )} ) ; ;

c l a s s ProposeReply =
l e t F l o c ( epoch , succ ) ( epoch’ , l d r ) =

i f epoch = epoch ’
then i f l d r = uid l o c

then { l e ad e r ’ s end c l i e n t ( epoch , l o c )}
e l s e { propose ’ s end succ ( epoch , imax ld r ( uid l o c ) )}

e l s e {}
in F o (PrNbr , p ropose ’base ) ; ;

c l a s s ChooseReply =
l e t F l o c ( epoch , succ ) epoch ’ =

i f epoch = epoch ’
then { propose ’ s end succ ( epoch , uid l o c )}
e l s e {}

in F o (PrNbr , choose ’base ) ; ;

(∗ −−−−−− Main c l a s s −−−−−− ∗)
main ( ProposeReply | | ChooseReply ) @ nodes

• client : Loc – the node to be informed of the election results

• uid : Loc → Int – a function assigning a unique id to each member of nodes
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Our slightly generalized protocol is still quite simple to describe. A node keeps track of the epoch in
which it is currently participating and ignores all propose or choose messages labeled with other epochs.
If it receives a config message for an epoch numbered higher than its current epoch, it switches to the
new epoch, and otherwise ignores it. A node reacts to all non-ignored propose and choose messages as
in the original protocol.

The delicate part lies in formulating the invariants preserved by the protocol and the conditions under
which it succeeds. What if reconfiguration occurs while an election is going on? What if config messages
arrive out of order—requesting epoch 4 and later requesting epoch 3? What if config messages partition
the nodes into two disjoint rings? We ignore those questions.

Nbr, the state of a node
Informally, the state of any node is a pair 〈epoch, succ〉 : Int ∗ Loc, where epoch is the number of its

current epoch and succ is the location of its current successor. This state changes only in response to
config messages. We capture that behavior in the class Nbr, which defines a state machine as follows:

• At location l , its initial state is 〈0, l〉; essentially, these are both dummy values.

• Input events are the arrivals of config messages, which are recognized by the base class config’base .

• The state transition in response to the input 〈epoch′, succ′〉 is: if epoch′ > epoch, then change to
〈epoch′, succ′〉; otherwise, no change.

We use the state machine idiom described in section 3.2. In addition to Nbr, which observes the state
after an input has been processed, we define PrNbr, which observes the state when an input arrives and
before it has been processed. (In fact, Nbr is only an auxiliary for the sake of defining PrNbr.)

l e t dumEpoch = 0 ; ;

c l a s s Nbr =
l e t F ( epoch , succ ) ( epoch’ , s u c c ’ ) =

i f epoch > epoch ’
then {( epoch , succ )}
e l s e {( epoch’ , s u c c ’ )} i n

F o ( c o n f i g ’ b a s e , P r i o r ( s e l f ) ? (\ l . { ( dumEpoch , l )} ) ) ; ;
c l a s s PrNbr = P r i o r ( Nbr )? (\ l . { ( dumEpoch , l )} ) ; ;

Factoring the main program.
We factor the behavior of the protocol into two classes, one triggered by propose messages and one

triggered by choose messages. We define

main ( ProposeRep ly | | ChooseReply ) @ nodes

and will define both ProposeReply and ChooseReply in terms of PrNbr.

ProposeReply.
The response to a proposal is as described informally: send a leader message if you receive your own

id; otherwise, propose to your successor the max of the proposal received and your own id.

c l a s s ProposeRep ly =
l e t F l o c ( epoch , succ ) ( epoch’ , l d r ) =

i f epoch = epoch ’
then i f l d r = u id l o c

then { l e a d e r ’ s e n d c l i e n t ( epoch , l o c )}
e l s e { p r o po s e ’ s e nd succ ( epoch , imax l d r ( u i d l o c ) )}

e l s e {}
i n F o ( PrNbr , p r o po s e ’ b a s e ) ; ;
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Since Nbr changes only in response to config messages, the state of Nbr is the same both before and
after a propose message arrives. So why couldn’t we simplify this definition by replacing the expression
“F o (PrNbr,Propose)” with “F o (Nbr,Propose)”?

The reason is that Nbr can only observe config’base -events, whereas PrNbr can observe any event e.
This use of (Prior (...))?(...) is a basic idiom of EventML programming—although, as will be seen in
section 4, it is often conveniently packaged within standard library combinators.

Note: If e is a propose’base-event at location loc, and no config’base -event has yet occurred at loc,
then e is a PrNbr-event, and the only value PrNbr observes at e is the pair (dumEpoch,loc).

ChooseReply
When ChooseReply receives a choose instruction for the epoch on which it is currently working, it

initiates an election by sending an appropriate propose message.

c l a s s ChooseReply =
l e t F l o c ( epoch , succ ) epoch ’ =

i f epoch = epoch ’
then { p r o po s e ’ s e nd succ ( epoch , u i d l o c )}
e l s e {}

i n F o ( PrNbr , c h o o s e ’ b a s e ) ; ;

This uses PrNbr instead of Nbr for the same reason that ProposeReply does.

4 State machines

Previous examples have built state machine classes by hand, from EventML primitives. The Nuprl library
defines combinators that package up idioms for defining state machines of various kinds. Many of
the automated tactics created to reason about event classes are tuned for definitions that use these
combinators.

4.1 Moore machines, “pre” and “post”

We have been using a standard strategy. First define what might loosely be called a Moore machine: in
response to inputs it updates its state and makes that state visible. We then use the simple composition
combinator to define a Mealy machine (loosely called) from this Moore machine: one that, in response to
some of the Moore machine’s inputs, returns directed messages. One virtue of this factoring is that, by
making the state visible, we can conveniently express state invariants as properties of classes explicitly
defined in the EventML code.

In general, we can define a Moore machine from the following data:

• A, the type of input values

• S , the type of state values

• X : Class(A), recognizing input events

• init : Loc → Bag(S ), assigning a bag of initial states to each location

• tr : Loc → A → S → S , assigning a transition function to each location

We introduce combinators, SM1−class and Memory1, that provide two different ways to observe this
state machine. In the idiomatic case, in which init assigns a singleton bag to every location:

• (SM1−class init (tr ,X )) is the “post” observer of the state machine, which behaves as follows:

– The events it recognizes are the X-events.
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– To every X-event e it assigns a singleton bag {v}, where v is the state of that state machine
after responding to e.

• (Memory1 init tr X ) is the “pre” observer of the state machine, which behaves as follows:6

– It recognizes all events.

– To every event e it assigns a singleton bag, {v} where, intuitively, v is the value of the state
when e arrives (before it is processed).

More precisely, if there has been no previous X -event at location loc(e), {v} = (init loc(e));
otherwise, letting e ′ be the most recent suchX -event before e, {v} = (SM1−class init (tr ,X ))(e ′)

We can define7 these combinators as follows:

c l a s s SM1−c l a s s i n i t ( t r ,X) = t r o (X, P r i o r ( s e l f )? i n i t ) ; ;
c l a s s Memory1 i n i t t r X = P r i o r (SM1−c l a s s i n i t ( t r ,X) )? i n i t ; ;

Thus, if we declare

c l a s s Y = SM1−c l a s s i n i t ( t r ,X ) ; ;
c l a s s PrY = Memory1 i n i t t r X ; ;

we know that that the following equations are satisfied:

Y = t r o (X , P r i o r (Y)? i n i t )
PrY = P r i o r (Y)? i n i t

4.2 Moore machines with multiple transition functions

One often wants a state machine whose inputs are defined by two or more different classes—typically,
base classes that recognize inputs of different kinds. For notational simplicity, consider the case of two
input classes. Now we have, for i = 1, 2:

• Ai, a type of input values

• S , a type representing values of the state

• Xi : Class(Ai) recognizing input events

• init : Loc → Bag(S ), assigning a bag of initial states to each location

• tr i : Loc → Ai → S → S , assigning transition functions to each location

Together with init , each of the pairs 〈tr i,Xi〉 defines a state machine with the same state type, S ,
but possibly different types of input values. In the idiomatic case, the X1-events and the X2-events are
disjoint and the state machine we want to define acts as follows: If e is an Xi-event, it takes the transition
defined by tr i. (The definition will guarantee that if e should be both an X1-event and an X2-event, the
state machine takes transition tr1.)

As before, we can define classes that represent both “post” and “pre” observations of this state
machine (for the idiomatic case):

• (SM2−class init (tr1,X1) (tr2,X2)) is the “post” observer. The events it recognizes are X1-events
or X2-events.

6The use of two separate parameters, tr and X , rather than a single pair, is a slightly awkward bit of legacy that will
eventually be changed.

7The definition we use for SM1−class is not literally this one, but is equivalent to it.
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Figure 4 2/3 consensus: preliminaries

s p e c i f i c a t i o n r s c

(∗ −−−−−− Parameters −−−−−− ∗)
(∗ consensus on commands o f a rb i t r a r y type Cmd with equa l i t y dec ide r ( cmdeq ) ∗)
parameter Cmd, cmdeq : Type ∗ Cmd Deq
parameter c o e f f : Int
parameter f l r s : Int (∗ max number o f f a i l u r e s ∗)
parameter l o c s : Loc Bag (∗ l o c a t i o n s o f (3 ∗ f l r s + 1) r e p l i c a s ∗)
parameter c l i e n t s : Loc Bag (∗ l o c a t i o n s o f the c l i e n t s to be n o t i f i e d ∗)

(∗ −−−−−− Imported Nuprl d e c l a r a t i o n s −−−−−− ∗)
import l ength poss−maj l i s t −d i f f deq−member from−upto bag−append Memory1

(∗ −−−−−− Type d e f i n i t i o n s −−−−−− ∗)
type Inn ing = Int
type CmdNum = Int
type RoundNum = CmdNum ∗ Inn ing
type Proposal = CmdNum ∗ Cmd
type Vote = (RoundNum ∗ Cmd) ∗ Loc

(∗ −−−−−− Messages −−−−−− ∗)
i n t e r n a l vote : Vote
i n t e r n a l r e t r y : RoundNum ∗ Cmd
in t e r n a l dec ided : CmdNum
output no t i f y : Proposa l
input propose : Proposa l

(∗ −−−−−− Var iab l e s −−−−−− ∗)
v a r i ab l e sender : Loc
v a r i ab l e l o c : Loc
v a r i ab l e n i : RoundNum
var i ab l e n : CmdNum

(∗ −−−−−− Aux i l i a r i e s −−−−−− ∗)
l e t i n i t x l o c = {x} ; ;

• (Memory2 init tr1 X1 tr2 X2) is the “pre” observer, which recognizes all events.

SM3−class/Memory3 and SM4−class/Memory4 are similar, except that they combine, respectively,
three and four different sources of inputs.

Note: EventML is rich enough to define all of these classes. For technical reasons, their official
definitions use features of the Nuprl type system not available in EventML, so we prefer simply to make
instances of these combinators available as quasi-primitives.

5 The two-thirds consensus protocol

Consider the following problem: A system has been replicated for fault tolerance. It responds to com-
mands issued to any of the replicas, which must come to consensus on the order in which those commands
are to be performed, so that all replicas process commands in the same order. Replicas may fail. We
assume that all failures are crash failures: that is, a failed replica ceases all communication with its sur-
roundings. The two-thirds consensus protocol is a simple protocol for coming to consensus, in a manner
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that tolerates n failures, by using (precisely) 3n+ 1 replicas.
Input events communicate proposals, which consist of integer/command pairs: 〈n, c〉 proposes that

command c be the nth one performed. The protocol is intended to obtain agreement, for each n, on
which command will be the nth to be performed, and to broadcast a notify message with those decisions
(which are also integer/command pairs) to a list of clients.

Each copy of the replicated system will contain a module that carries out the consensus negotiations.
In this specification we describe only those modules (which we continue to call Replicas). To specify the
full system we would have to include a description of how those decisions are used. That is done in the
description of the Paxos protocol (section 6).

For convenient display, we split the full specification into smaller chunks: figure 4 contains the
prefatory information (parameters, imports, type definitions, message declarations, variables, auxiliaries)
and figures 5 through 8 define the classes. Section 5.1 walks through code, redisplaying fragments of the
text as they are discussed. A reader may find it helpful first to concentrate on the informal description of
each class provided and then, before studying details, turn to section 5.2 to see some scenarios showing
the protocol in action. Section 5.3 explains why the protocol satisfies the basic safety property of
consistency—it will not send contradictory notifications. That section also defines the precise sense in
which the protocol can “tolerate” up to flrs “failures,” but does not provide a proof of that.

5.1 The specification of 2/3-consensus

5.1.1 Preliminaries

This section comments on the preliminary definitions given figure 4, and also introduces the library
combinator until .

Parameters
The parameters of the protocol are

• Cmd: the type of commands

• flrs : the max number of failures to be tolerated

• locs : the locations of the 3 ∗ flrs + 1 replicated processes that decide on consensus

• clients : the locations of the clients to be notified of decisions

We make no assumptions about who submits inputs or constraints on how they are submitted.
The declaration of the Cmd parameter also introduces a parameter for an equality operator:

paramete r Cmd, cmdeq : Type ∗ Cmd Deq

When we instantiate the type Cmd, we must also instantiate cmdeq with an operation that decides
equality for members of that type. The keyword Deq denotes a type constructor: (Cmd Deq) is the type
of all equality deciders for Cmd. We need cmdeq because we want to apply deq−member to compute
membership in a list of commands; as noted in section 3.2, we must therefore supply an equality decider.

Variables
One reason for the variable declarations, such as

v a r i a b l e s s ende r : Loc
v a r i a b l e n i : RoundNum

is to introduce notational conventions that make the specification easier to read. Type checking will
object if the notations are misused.

A second reason is to help the type inference algorithm, which sometimes requires hints about the
types of the arguments to functions being defined. An expression or pattern may be labeled with a type,
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which will be checked statically, and may also constrain polymorphism that might otherwise arise. E.g.,
after

l e t foo x = x ; ;
l e t ba r ( x : I n t ) = x ; ;
l e t baz ( x , y : Bool ) = ( x , y ) ; ;

foo is thepolymorphic function on every type; bar is the identity function on integers; and baz is the
identity function on pairs whose second coordinate is boolean. Typically, we want library functions
to be highly polymorphic and widely applicable, but the functions defined in EventML programs to be
much more constrained. By and large, the polymorphism of an EventML program is expressed in its
parameters.

Without variable declarations for ni and sender the definition of the newvote operation would have
to be expressed as

l e t newvote ( n i : RoundNum) ( ( n i ’ , c ) , s ende r : Loc ) ( , l o c s ) = . . . ; ;

but with those declarations, we may simply write

l e t newvote n i ( ( n i ’ , c ) , s ende r ) ( , l o c s ) = . . . ; ;

As a practical matter, there’s not much point in trying to anticipate where type inference needs hints.
Most commonly, help may be needed when the right hand side of the definition calls on a polymorphic
function such as deq−member, which operates on lists of any type that has a decidable equality operator.

The balance between introducing variable declarations and adding type labels to patterns and ex-
pressions is a matter of taste.

Auxiliaries
We introduce a convenient notation for specifying the “ init ” parameter of SM∗−class or Memory∗

(section 4):

l e t i n i t x l o c = {x} ; ;

Used in that context, ( init x ) is the function that assigns the initial state x to every location.

Class combinators
The specification uses one new library combinator:

• X until Y: v ∈ (X until Y)(e) iff v ∈ X(e) and no Y-event has previously occurred at loc(e). That
is, at any location l , the class (X until Y) acts exactly like X until a Y-event occurs at l , after which
it falls silent.

5.1.2 The top level: Replica

Replica is the event class characterizing the actions of a decider. As noted in figure 8, the main program

main Rep l i c a @ l o c s

installs a decider at each location in locs .
For each n, a Replica will spawn (at most) one instance Voter to communicate with other instances

of Voter and come to consensus on a single proposal of the form (n, ).

c l a s s R ep l i c a = NewVoters >>= Voter ; ;
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Figure 5 2/3 consensus: NewVoters and ReplicaState

(∗ −−−−−−−−−− Rep l i caS tat e : a s t a t e machine −−−−−−−−−− ∗)

(∗ −− i nput s −− ∗)
l e t vote2prop l o c ( ( ( n , i ) , c ) , l o c ’ ) = {(n , c )} ; ;
c l a s s Proposal = propose ’base | | ( vote2prop o vote ’base ) ; ;

l e t upda t e r ep l i c a (n , c ) (max , miss ing ) =
i f n > max
then (n , miss ing ++ ( from−upto (max + 1) n ) )
e l s e i f deq−member ( op =) n miss ing

then (max , l i s t −d i f f ( op =) miss ing [ n ] )
e l s e (max , miss ing ) ; ;

c l a s s Rep l i caS tat e = Memory1 ( i n i t ( 0 , n i l ) ) upda t e r ep l i c a Proposal ; ;

(∗ −−−−−−−−−− NewVoters −−−−−−−−−− ∗)

l e t when new proposal l o c (n , c ) (max , miss ing ) =
i f n > max or deq−member ( op =) n miss ing then {(n , c )} e l s e {} ; ;

c l a s s NewVoters = when new proposal o ( Proposal , Rep l i caS tat e ) ; ;

For each n, NewVoters spawns a Voter in response to the first proposal or vote it receives concerning
command n.

We define consensus on proposal 〈n, c〉 to mean that 2/3 (plus one) of the replicas vote for it. On any
particular poll of the voters that degree of consensus cannot be guaranteed—so we allow do-over polls,
for which we adopt the following terminology. Successive polls for each command number are assigned
consecutive integers called innings ; the pair 〈command number , inning〉 is called the polling or voting
round.

Votes are of type Vote. Each contains:

• the round in which the vote is cast

• a command being voted for in that round

• the voter’s location (used to ensure that repeat votes from the same source are ignored)

5.1.3 ReplicaState and NewVoters

This section refers to figure 5.
A Replica acts when NewVoters does, in response to propose and vote inputs. These are recognized

by the class Proposal:

l e t vo te2prop l o c ( ( ( n , i ) , c ) , s ende r ) = {(n , c )} ; ;
c l a s s P ropo sa l = p ro po s e ’ b a s e | | ( vo te2prop o v o t e ’ b a s e ) ; ;

Proposal observes the value of type Proposal input in its input.
ReplicaState maintains the state of a Replica, enough information to recognize the first time it sees

a Proposal-event about command n (meaning a value of the form 〈n, c〉 for some command c). Its state
has type Int ∗ ( Int List ). The Int component is the greatest n for which it has seen such an event; and
the ( Int List ) component is the list of all natural numbers less than that maximum for which it has not
yet seen a proposal event.
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Figure 6 2/3 consensus: Rounds and Quorums

(∗ −−−−−−−−−− QuorumState −−−−−−−−−− ∗)

l e t newvote n i ( ( n i ’ , c ) , sender ) ( cmds , l o c s ) =
ni = n i ’ & ! ( deq−member ( op =) sender l o c s ) ; ;

l e t add to quorum ni ( ( n i ’ , c ) , sender ) ( cmds , l o c s ) =
i f newvote n i ( ( n i ’ , c ) , sender ) ( cmds , l o c s )
then ( c . cmds , sender . l o c s )
e l s e ( cmds , l o c s ) ; ;

c l a s s QuorumState n i = Memory1 ( i n i t ( n i l , n i l ) ) ( add to quorum ni ) vot e ’base ; ;

(∗ −−−−−−−−−− Quorum −−−−−−−−−− ∗)

l e t roundout l o c ( ( ( n , i ) , c ) , sender ) ( cmds , ) =
i f l ength cmds = 2 ∗ f l r s
then l e t (k , x ) = poss−maj cmdeq ( c . cmds) c in

i f k = 2 ∗ f l r s + 1
then bag−append ( dec ided ’b roadcas t l o c s n )

( n o t i f y ’ b r oad c a s t c l i e n t s (n , x ) )
e l s e { r e t r y ’ s end l o c ( ( n , i +1) , x ) }

e l s e {} ; ;

l e t when quorum ni l o c vote s t a t e =
i f newvote n i vote s t a t e then roundout l o c vt s t a t e e l s e {} ; ;

c l a s s Quorum ni = (when quorum ni ) o ( vot e ’base , QuorumState n i ) ; ;

(∗ −−−−−−−−−− Round −−−−−−−−−− ∗)

c l a s s Round ( ni , c ) = Output (\ l o c . vot e ’b roadcas t l o c s ( ( ni , c ) , l o c ) )
| | Once(Quorum ni ) ; ;

l e t u p d a t e r e p l i c a ( n , c ) (max , m i s s i n g ) =
i f n > max
then (n , m i s s i n g ++ ( from−upto (max + 1) n ) )
e l s e i f deq−member ( op =) n m i s s i n g

then (max , l i s t −d i f f ( op =) m i s s i n g [ n ] )
e l s e (max , m i s s i n g ) ; ;

c l a s s R e p l i c a S t a t e = Memory1 ( i n i t (0 , n i l ) ) u p d a t e r e p l i c a
P ropo sa l ; ;

The initial state of a ReplicaState is 〈0, nil〉. The infix operator ++ is the append operator and the
imported Nuprl operations from−upto and list −diff have the following meanings:

from−upto i j = [i; i+ 1; i+ 2; ...; j − 1]

list −diff (op =)[a; b; ...][m;n; . . .] = the result of deleting all occurrences of m,n, . . . from [a; b; ...]

Every event is a ReplicaState-event, and observes the state of the state machine when the event occurs
(before any processing).

24



DRAFT — February 10, 2012

Figure 7 2/3 consensus: NewRounds and Voters

(∗ −−−−−−−−−− NewRoundsState −−−−−−−−−− ∗)

l e t vot e2re t ry l o c ( ( ni , c ) , sender ) = {( ni , c ) } ; ;
l e t RoundInfo = r e t r y ’ b a s e | | ( vot e2re t ry o vote ’base ) ; ;

l e t update round n ( (m, i ) , c ) round = i f n = m & round < i then i e l s e round ; ;

c l a s s NewRoundsState n = Memory1 ( i n i t 0) ( update round n) RoundInfo ; ;

(∗ −−−−−−−−−− NewRounds −−−−−−−−−− ∗)

l e t when new round n l o c ( (m, i ) , c ) round =
i f n = m & round < i then { ( (m, i ) , c )} e l s e {} ; ;

c l a s s NewRounds n = (when new round n) o (RoundInfo , NewRoundsState n) ; ;

(∗ −−−−−−−−−− Voter −−−−−−−−−− ∗)

c l a s s Halt n = (\ .\m. i f m = n then { ( )} e l s e {}) o dec ided ’base ; ;

c l a s s Voter (n , c ) = Round ( (n , 0 ) , c )
| | ( (NewRounds n >>= Round) u n t i l ( Halt n ) ) ; ;

Figure 8 2/3 consensus: The top level

(∗ −−−−−−−−−− Repl ica −−−−−−−−−− ∗)

c l a s s Rep l ica = NewVoters >>= Voter ; ;

(∗ −−−−−−−−−− Main program −−−−−−−−−− ∗)

main Repl ica @ l o c s ; ;

NewVoters-events are Proposal-events. NewVoters compares the data observed by Proposal with the
state of the replica when the message arrives, in order to decide whether it is the first proposal about
some n.

l e t when new proposa l l o c ( n , c ) (max , m i s s i n g ) =
i f n > max or deq−member ( op =) n m i s s i n g
then {(n , c )}
e l s e {} ; ;

c l a s s NewVoters = when new proposa l o ( Proposa l , R e p l i c a S t a t e ) ; ;

5.1.4 The next level: Voter

A Voter is a parallel composition of two classes:

c l a s s Voter ( n , c ) = Round ( ( n , 0 ) , c )
| | ( ( NewRounds n >>= Round ) u n t i l Ha l t n ) ; ;
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where:

• Round((n, i), c) will, at any location, conduct the voting for round (n, i), and will cast its vote in
that round for command c.

• NewRounds n >>= Round will determine when it is time to begin a new round of voting for the
nth command and spawn a class to conduct the voting in that new round.

• The clause “ until Halt n” will cause termination when it detects a Halt n event, which signals that
some Voter has found a consensus for command n.

5.1.5 Round and Quorum

This section refers to figure 6.

Round ((n, i), c)
Round ((n, i), c), running at location loc, broadcasts a vote from loc for command c in round (n, i)

and runs an instance of Quorum. Quorum (n, i) keeps a tally of votes received at l in round (n, i) and
uses that tally to determine either that consensus has been reached (in which case it notifies the clients
and sends every Replica, including itself (i.e., the replica that spawned it), a decided message) or that
consensus might not be possible in inning i (in which case it sends to itself a suitable retry message).

c l a s s Round ( n i , c ) = Output (\ l o c . v o t e ’ b r o a d c a s t l o c s ( ( n i , c ) , l o c ) )
| | Once (Quorum n i ) ; ;

(Quorum (n, i)) is a state machine that responds to vote messages. Intuitively, its state consists of a
pair 〈cmds, locs〉. Each time it receives a new vote for proposal 〈n, c〉 in inning i , it prepends c to the
list cmds . locs is the list of the locations that sent those commands. (We keep the list of senders so that,
if a vote from any sender is delivered multiple times, it will only be counted once.) The initial state is
a pair of empty lists. (QuorumState (n, i)) is the “pre” Moore machine that observes this state when a
vote arrives.

l e t newvote n i ( ( n i ’ , c ) , s ende r ) ( cmds , l o c s ) =
n i = n i ’ & ! ( deq−member ( op =) s ende r l o c s ) ; ;

l e t add to quorum n i ( ( n i ’ , c ) , s ende r ) ( cmds , l o c s ) =
i f newvote n i ( ( n i ’ , c ) , s ende r ) ( cmds , l o c s )
then ( c . cmds , s ende r . l o c s )
e l s e ( cmds , l o c s ) ; ;

c l a s s QuorumState n i = Memory1 ( i n i t ( n i l , n i l ) )
( add to quorum n i ) v o t e ’ b a s e ; ;

The transition function for (QuorumState (n, i)) is (add to quorum (n, i)). A vote message is a no-op
unless it’s a vote in round (n, i) that comes from a new location. If it’s both, then the vote is tallied by
prepending to it state components the command it votes for and the location of its sender.

Quorum (n, i) is a Mealy machine defined from QuorumState. It produces an output once it has
received votes from 2 flrs + 1 distinct locations. If all of them are votes for the same command d , it
broadcasts notify and decided messages. If not, then it is possible that on this round no proposal will
ever receive 2 flrs +1 votes; so it sends itself a retry message to trigger initiation of inning i + 1 . (Once
it has sent the retry message it will ignore any votes it subsequently receives in round 〈n, i〉, even if they
would result in some proposal’s receiving 2 flrs + 1.)
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l e t roundout l o c ( ( ( n , i ) , c ) , s ende r ) ( cmds , ) =
i f l e n g t h cmds = 2 ∗ f l r s
then l e t ( k , x ) = poss−maj cmdeq ( c . cmds ) c i n

i f k = 2 ∗ f l r s + 1
then bag−append ( d e c i d e d ’ b r o a d c a s t l o c s n )

( n o t i f y ’ b r o a d c a s t c l i e n t s (n , x ) )
e l s e { r e t r y ’ s e n d l o c ( ( n , i +1) , x ) }

e l s e {} ; ;

l e t when quorum n i l o c vo t e s t a t e =
i f newvote n i vo t e s t a t e then roundout l o c vt s t a t e e l s e {} ; ;

c l a s s Quorum n i = ( when quorum n i ) o ( v o t e ’ b a s e , QuorumState n i ) ; ;

Consider first the outer conditional. The (cmds, ) argument matches the value observed by QuorumState,
so (length cmds) is the number of votes tallied before the input arrives. If this test fails then, even with
the new input, the state machine will not yet have received 2 flrs + 1 votes, so the input is ignored.

Consider the inner conditional. The imported operation poss−maj implements the Boyer-Moore
majority algorithm. Thus, the locally defined constants k and x have the following meaning: If some
element of the list c.comds appears in a majority of its entries, x is that element and k is the number of
times it occurs. Thus, the inner conditional tests for unanimity.

The data of a retry message consists of the new round to be initiated and, in addition, the name of
a command to propose in this new round. The definition of roundout attempts to choose that command
in a reasonable way: So, if the votes are not unanimous, but some command receives a majority, that
majority-receiving command will be proposed in the retry message.8

5.1.6 NewRounds and Voters

This section refers to figure 7.

Halt n

Halt n recognizes the arrival of decided message with body n. We make it a class of type Unit, since
the only information conveyed is the fact that the message has arrived.

c l a s s Ha l t n =
Once ( (\ .\ i . i f i = n then { ( )} e l s e {}) o d e c i d e d ’ b a s e ) ; ;

NewRounds n
Recall that (NewRounds n) decides when to initiate a new round of voting about the nth command

and, when necessary, spawns an instance of Round, supplying it with a new round number of the form
〈n, 〉 and a command to vote for in that round.

(NewRoundsState n) is a “pre” Moore machine. It’s state is an integer, initially 0. At any location
it keeps track of the greatest inning i for which it has “participated” in a round of the form 〈n, i〉. A
location has “participated” in such a round if it has received a retry message with data 〈〈n, i〉, 〉, or a
vote message with data 〈〈〈n, i〉, 〉, 〉. So its input events are recognized by RoundInfo, which observes
the round/command pair embedded in its input.

l e t v o t e 2 r e t r y l o c ( ( n i , c ) , s ende r ) = {( n i , c ) } ; ;
c l a s s RoundInfo = r e t r y ’ b a s e | | ( v o t e 2 r e t r y o v o t e ’ b a s e ) ; ;

8This is crucial to the correctness of the protocol.
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The transition function, update round, updates the state whenever its input constitutes participation in
an inning greater than the current state value:

l e t update round n ( (m, i ) , c ) round = i f n = m & round < i
then i e l s e round ; ;

c l a s s NewRoundsState n =
Memory1 ( i n i t 0) ( update round n ) RoundInfo ; ;

There’s some redundancy in defining the Mealy machine NewRounds from NewRoundsState.9 The
condition in when new round is the same as that in the transition function updated round: when the
transition is a no-op, NewRounds ignores the input; when it’s not, NewRounds passes along the input
that caused the update.

l e t when new round n l o c ( (m, i ) , c ) round =
i f n = m & round < i then { ( (m, i ) , c )} e l s e {} ; ;

c l a s s NewRounds n =
( when new round n ) o ( RoundInfo , NewRoundsState n ) ; ;

5.2 Illustrative runs of the protocol

This section contains message sequence charts that describe some possible runs of the 2/3-consensus
protocol. To make the charts easier to read, all message arrows are drawn horizontally (except for self-
messages).10 That requires a small, but semantically inessential, deviation from the official semantics of
EventML. Actions that are atomic in EventML may be shown as nonatomic. Consider figure 9. The top
diagram shows A broadcasting message x to B, C, and D as a single event. At C, the act of receiving
message x and replying with y is atomic. The second diagram teases everything apart.

We can represent delay in message transit, in part, as a delay in sending the message. Since only
message arrivals are observable, no distinction between the picture and the official semantics will be
observable.

A detailed look at retry Figure 10 shows (part of) one possible run of the consensus protocol, in
which a round ends not in consensus but in a retry that starts a new round. We assume that flrs = 1,
so there are four instances of Replica and a proposal will be accepted if it gets three votes. The diagram
does not depict all the classes—in particular, we show only three of the replicas—and does not display
all the messages sent. It contains abbreviations, which are defined in the following table:

vote1x = [vote : ((2 , 0 ), x , l1 )]
vote2 = [vote : ((2 , 0 ), x , l2 )]
vote4y = [vote : ((2 , 0 ), y, l4 )]
retryx = [ retry : ((2 , 1 ), x )]
vote ′2x = [vote : ((2 , 1 ), x , l2 )]
α : start Round ((2,0),x); Quorum state = ([x], [l1])
β : Quorum state = ([x;x], [l1; l2])
γ : Quorum state = ([x;x; y], [l1; l2; l4])
δ : start Round ((2,1),x); Quorum state = ([x], [l2])

Note that votes not marked with a “′” are cast in inning 0 (i.e., in this case, round (2,0)) and votes
marked with “′” are cast in inning 1.

This run begins when the Replica at location l1 receives a proposal (2, x) from the environment. We
assume that location l1 has not previously received a vote or proposal for command 2; accordingly, it

9The next version of the library will contain a different set of combinators that avoids that.
10A horizontal arrow does not imply instantaneous communication.

28



DRAFT — February 10, 2012

Figure 9 Simplifying pictures
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responds by spawning an instance of Voter (2, x) at l1. Only one component of this Voter will play a role:
Round ((2, 0), x). This class broadcasts vote1x, a vote for the proposal it received—though the diagram
shows only two of those messages. Its Quorum component plays no role in this part of the run.

A Replica can respond to either a vote or a proposal. When the Replica at location l2 receives
vote1x (also assumed to be new), it spawns an instance of Voter (2, x) at l2. This initiates an instance
of Round ((2, 0), x) at location l2, which will broadcast vote2 and spawn an instance of Quorum (2, 0)
at l2. Of this broadcast we show only the message it sends to itself.11 Comment α says that the vote
that spawned the Round updates the internal state of Quorum to ([x], [l1]), recording the fact that a
vote for command x came from l1. As β indicates, the self message updates the state of this Quorum to
([x;x], [l1; l2]).

Meanwhile, the Replica at location l4 has received a competing proposal: that command 2 be y, not
x. It spawns Voter (2, y), which broadcasts vote4y ; we show only the message received by the Voter at
l2. This updates the state of Quorum at l2 to ([x;x; y], [l1; l2; l4]). Once it has received votes from three
distinct locations Quorum makes a decision: in this case, because the votes are not unanimous, it must
start a new round by sending itself a retry message.12 As δ indicates, this retry starts Round ((2, 1), x).
So the Voter at l2 begins by broadcasing vote ′2x.

Notification and retry in the same round Figure 11 shows part of a run in which the Voter at
l1 broadcasts a notification that the second command will be x, but the Voter at l2 sends a retry that
launches a new round. As before, the diagram does not depict all the classes or all the messages sent.
Instead of walking through the successive states of the Quorum classes, we only note their states when
they reach a decision. The abbreviations are as follows:

vote1x = [vote : ((2 , 0 ), x , l1 )]
vote2x = [vote : ((2 , 0 ), x , l2 )]
vote3x = [vote : ((2 , 0 ), x , l3 )]
vote4y = [vote : ((2 , 0 ), y, l4 )]
decidedx = [decided : (2 , x ))]
notifyx = [ notify : (2 , x )] is broadcast to all clients
retryx = [ retry : ((2 , 1 ), x )]
α : Quorum state = ([x;x;x], [l1; l2; l3])
β : Quorum state = ([x;x; y], [l1; l2; l3])
γ : start Round ((2,1),x); Quorum state = ([x], [l2])

The first three votes seen by the Voter at location l1 are votes for x, so it notifies all clients that
agreement has been reached—command 2 is x—and sends a decided message to stop all the Voters
working on command 2. The Voter at location l2 sees two votes for x and one for y and it launches a
new round before it receives the decided message that stops it. The crucial point is that, on launching
this round it casts its vote for x. If the retry proposed y, it might be possible that the remaining voters
in some later round would come to consensus on command y; clients would then receive a contradictory
notification saying that command 2 is y. Section 5.3 explains why this calamity cannot occur.

Failure to achieve consensus Figure 12 illustrates a run in which this protocol fails to achieve
consensus, a possibility that, according to the FLP theorem [FLP85] is inevitable. The abbreviations are
as follows:

11The Replica at location l2 sees this vote but, as it has already seen a vote for command 2, the self message does not
cause it to spawn a new Voter.

12It is possible that the fourth Replica would cast a vote for proposal (2, x), providing the three votes, but that would
come too late.

30



DRAFT — February 10, 2012

Figure 10 Detailed example of a retry
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Figure 11 Notify and Retry on the same round
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Figure 12 Failure to achieve consensus
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vote1x = [vote : ((2 , 0 ), x , l1 ])
vote2x = [vote : ((2 , 0 ), x , l2 ])
vote3y = [vote : ((2 , 0 ), y, l3 ])
vote4y = [vote : ((2 , 0 ), y, l4 ])
retryx = [ retry : ((2 , 1 ), x ])
retryy = [ retry : ((2 , 1 ), y ])
α1 : Quorum state = ([x;x], [l1; l2])
α2 : Quorum state = ([x;x; y], [l1; l2; l4])
α3 : start Round ((2,1),x); Quorum state = ([x], [l1])
β1 : Quorum state = ([y; y], [l4; l3])
β2 : Quorum state = ([y; y;x], [l4; l3; l1])
β3 : start Round ((2,1),y); Quorum state = ([y], [l4])

We omit the Voter classes spawned at locations l2 and l3, depicting their messages as coming directly
from the Replica classes themselves. In round (2,0), the Replica at l1 votes for x and the Replica voting
for y. This exchange of messages results in abandoning round (2,0). But round (2,1) begins in exactly
the same way: with Replica at l1 voting for x and at l2 voting for y. The pattern can in principle repeat
endlessly.
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5.3 Properties of the 2/3-consensus protocol

Consistency The 2/3-consensus protocol must satisfy the basic safety property of consistency—if the
messages ([ notify : 〈n, x〉]) and ([ notify : 〈n, y〉]) are sent, then x = y. The example in figure 11 makes
it clear that the following property is necessary (though not quite sufficient) to guarantee that.

If, in any round, some Voter finds a quorum for command x, then, in that round, x is the
only command that can be proposed by a retry message.

PROOF: Suppose that one Voter sees 2f + 1 votes for command x in a given round. Since each Voter
votes for only one command in any round, that round can contain no more than f votes for any command
other than x. Now consider the situation of any other Voter making a decision in that round: It will
have received 2f + 1 votes, and at most f of them can be for a command other than x. Therefore, at
least f + 1 of the votes it sees must be for x; so if it sends a retry message, that retry proposes x.

The argument is not quite done. Suppose one Voter finds a quorum for x in round 〈n, i〉 but other
Voters do not, and will therefore participate in subsequent rounds. Is it possible that one of those later
rounds contains a vote for some other command y (possibly as the result of a new proposal received from
some external source), and that, as a result, some later round 〈n, j〉 finds a quorum for y? No, because
a stronger property holds.

If some Voter finds a quorum for command x in round 〈n, i〉 then in any round 〈n, j〉 with
j > i all votes cast are votes for x.

PROOF: Every vote can ultimately be traced either to a retry message or to a proposal message received
by some Replica from an external source. However, a Replica will ignore a proposal with body 〈n, c〉
unless it has never before received either a proposal or a vote for something of the form 〈n, 〉. Thus,
votes that arise from external proposals can be cast only in rounds of the form ( , 0). That is to say that
all votes in round 〈n, i〉 with i > 0 arise from retry messages sent in round 〈n, i − 1〉. So, by induction,
once we encounter any round in which all retry messages are for command x, all subsequent rounds can
only contain votes for x.

Fault tolerance When a process suffers a crash failure it stops sending messages. (It does not perform
erratically by, e.g., violating the requirements of the protocol.) The 2/3-consensus protocol will tolerate
up to flr crash failures, in the following sense:

All executions of the protocol that suffer only crash failures, and no more than flr of those,
are non-blocking—that is, execution never reaches a state from which consensus is impossible.

By the FLP theorem, this is the strongest fault tolerance guarantee that a consistent consensus
protocol can provide.

6 Paxos

Paxos is also a consensus protocol for coordinating the behavior of copies of a state machine that has
been replicated to tolerate crash failures. It requires only 2n + 1 copies in order to tolerate n failures.
The EventML program formalizes the pseudo-code description of Paxos given in [Ren11]. We assume
that the reader is familiar with that paper and has a copy in hand.

6.1 A gross description of the protocol

This section gives a very high-level description of how participants in the protocol—Replicas, Leaders,
and Acceptors—interact. It omits much of the combinatorial detail that makes the protocol work.
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6.1.1 Replicas

A Replica puts a wrapper around a copy of the state machine we want to replicate. To invoke an operation
on the state machine a client sends every Replica a request that contains a Command consisting of three
things: the client’s return address; the name of an operation to be performed; an identifier, a “client
id,” chosen by the client. After the operation is performed the client will receive a message containing
both the result and that identifier—so clients should give distinct requests distinct client id’s, but the
correctness of the protocol does not depend on that.

On receiving requests, Replicas formulate proposals. A Proposal is a pair consisting of a positive
integer and a Command.13 Intuitively, 〈n, cmd〉 “proposes” that cmd should be the nth command
performed by each copy of the state machine; we call n the slot number of the proposal.

Replicas send proposals to Leaders; Leaders send to Replicas decision messages containing the
Proposal values on which the protocol has achieved consensus.

More specifically, when a Replica receives a request for command cmd , it chooses the least slot
number n for which it has neither made a previous proposal nor received a decision and sends the
proposal 〈n, cmd〉 to every Leader. A Replica that has proposed 〈n, cmd〉 may subsequently receive a
decision message choosing some other command for slot n; if so, and if the Replica has not already
executed cmd , the Replica will propose the command for a different slot. (Note: Leaders may receive
proposals to put the same command in different slots and, as a result, the same command may be chosen
for multiple slots; but it will not be executed more than once.)

There may be gaps in what a Replica knows—e.g., it may have received 〈1 , cmd1〉, 〈2 , cmd2〉, and
〈4 , cmd4〉, in decision messages, but no such message about any proposal of the form 〈3 , 〉. In this state,
a Replica may execute cmd1 and cmd2, in that order14, but may not execute any further commands
until it has received a decision about the command for slot number 3. The details of the bookkeeping
make Replicas the most algorithmically complex of the participants, but they are from our point of view
the least interesting, because the actions of the Replicas are essentially independent of the protocol used
to obtain consensus.

6.1.2 Leaders and Acceptors

The heart of the protocol is the interaction between Leaders and Acceptors, which can be defined
independently of the beavior of the Replicas. Leaders engage in a dialogue with the Acceptors to
determine which of the proposals they receive will be agreed to. Acceptors vote and their votes are
tallied by processes that the Leaders spawn. As usual, any one election need not yield a decision; so
re-votes must be accommodated. Each Leader has an unbounded supply of ballot numbers (of type
Ballot Num), disjoint from the supply of every other Leader. The data contained in a vote is a “pvalue”
consisting of a ballot number and a Proposal (voted for on that ballot). The set of all ballot numbers is
linearly ordered.

The Leader/Acceptor dialogue consists of two phases, repeated as often as necessary. To carry out
each instance of phase 1 a Leader chooses a ballot number from its supply and spawns a Scout process
that exchanges messages with Acceptors to determine whether that ballot number will be adopted or
preempted.15 Scouts send p1a messages and Acceptors reply with p1b messages. If the ballot number is
preempted, the Leader will choose a new ballot number and spawn a new Scout for it. (As will be seen,
a ballot number may also be preempted in phase 2.) If its ballot number is adopted, a Leader proceeds
to phase 2.

To carry out phase 2, a Leader spawns Commander processes that solicit votes from Acceptors. Each
Commander is associated with a pvalue, 〈b, 〈s , p〉〉, where b is a ballot number adopted in phase 1 and
not (yet) preempted. (Call this an “active” ballot number.) The Commander asks the Acceptors for

13Depending on context, [Ren11] uses the word “proposal” sometimes for a value of type Command and sometimes for
one of type Proposal.

14Assuming that neither of them has previously been executed.
15These messages will contain additional data needed for bookkeeping.
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the highest ballot number they’ve seen (including the b they’ve just received). Commanders send p2a
messages and Acceptors reply with p2b messages. The Commander for 〈b, 〈s , p〉〉 tallies the replies from
Acceptors, which will result either in choosing 〈s, p〉 (in which case the Commander notifies the Replicas
with decision messages) or preempting b (causing the Leader to choose a new ballot number and spawn
a new Scout).

The phase 1 and phase 2 voting dialogues are described further in section 6.1.3.

All a Leader does is spawn Scouts and Commanders. Its state consists of three things: a ballot
number; a boolean that is true iff that ballot number is active; a list of proposals that the Leader is
working on. This list will always be consistent (as defined in section 6.3). A Leader begins by spawning
a Scout for the least ballot number that it owns and thereafter responds to preempted, propose, and
adopted messages.

A preempted message, which may come from a Scout or a Commander, causes a Leader to choose a
new ballot number (which will be “bad” unless and until it becomes adopted) and spawn a Scout for it.

A propose message comes only from a Replica. In response to [propose : 〈s, p〉], a Leader acts as
follows: If it has already received a proposal for slot s it ignores the input. If not, it adds 〈s, p〉 to the
list of proposals it’s working on; and if, in addition, its current ballot number b is active, it spawns a
Commander for 〈b, 〈s , p〉〉.

If a Leader receives an adopted message for its current ballot number (call it bn), the Leader first uses
additional data in the message to update its list of “proposals I’m currently working on.” (The details
are somewhat complex.) Then, for each proposal 〈s, p〉 in that revised list it spawns a Commander for
〈bn, 〈s, p〉〉. (An adopted message for a ballot number other than bn will be ignored.)

6.1.3 The voting

Phase 1, simplified: A Scout for ballot number b sends every Acceptor a p1a message containing b.
An Acceptor replies with a p1b message containing (among other things) the greatest ballot number that
it has so far received (in either a p1a or p2a message)—which is guaranteed to be a ballot number at
least as great as b. The Scout tallies responses and comes to a decision as soon as one of the following
two things happens:

1. It receives a p1b message with a value b′ 6= b.

In this case, the Scout sends the Leader a preempted message with value b′. The Leader will update
its current ballot to a value greater than b′ and spawn a new Scout for it.

2. It receives p1b messages with value b from a majority of the Acceptors.

In this case, the Scout sends the Leader an adopted message with value b. What makes this a
simplified account: an Acceptor sends extra information to a Scout in its p1b message and a Scout
sends extra information to its Leader in its adopted message. Explaining that will require some
discussion of phase 2.

Because of (1), the Scout will declare its ballot number adopted only if it receives a unanimous majority.
If, before that occurs, it receives a single reply with a value other than b then it is logically possible that,
because of failures, a majority for b cannot exist.

Phase 2, simplified: A Commander for the pvalue 〈b, 〈s , p〉〉 sends a [p2a : 〈b, 〈s , p〉〉] message to
every Acceptor. Each Acceptor responds with a p2b message containing the largest ballot number it has
seen (including b). The Commander tallies these responses just as a Scout does: If it receives a p2b
message with a b′ 6= b before it receives a unanimous majority for b it preempts; otherwise, it broadcasts
a decision message for proposal 〈s, p〉.
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Figure 13 Paxos parameters

parameter accp t s : Loc Bag (∗ Locat ions o f accep tor s ∗)
parameter reps : Loc Bag (∗ Locat ions o f r e p l i c a s ∗)
parameter l d r s : Loc Bag (∗ Locat ions o f l e ad e r s ∗)
(∗ We’re assuming that none o f the se bags has r e p e t i t i o n s . ∗)

parameter l d r s u i d : Loc → Int
(∗ This funct ion i s used to order the l e ad e r l o c a t i o n s . ∗)

parameter Op, eqOp : Type ∗ Op Deq (∗ Operations invoked by r e p l i c a s . ∗)
parameter Cid , eq Cid : Type ∗ Cid Deq (∗ Command i d e n t i f i e r s ∗)

parameter Resu lt : Type (∗ Resu l t s returned by r e p l i c a s ∗)
parameter RepState : Type (∗ State o f SMs to be r e p l i c a t e d ∗)

parameter i n i t r s t a t e : RepState (∗ Common i n i t i a l s t a t e o f SMs ∗)
parameter apply op : Op → RepState → RepState ∗ Resu lt

Phases 1 and 2, unsimplified: If an Acceptor responds to a [p2a : 〈b, 〈s , p〉〉] message from a
Commander by returning b, we say that it accepts that pvalue. An Acceptor keeps track of all the
pvalues it has thus far accepted and includes that set in the p1b messages it sends to Scouts. When a
Scout finds that a majority has accepted its ballot number, it includes in the adopted message it sends to
the Leader a set consisting of all the pvalues accepted by all the Acceptors that accepted it. The Leader
will use this information to constrain the way it spawns Commanders, so as to guarantee consistency in
decisions: if there are decisions for slot n on multiple ballots they all choose the same command.

Following these rules literally means that the state of an Acceptor and the contents of p1b and adopted
messages can grow without bound. [Ren11] notes simple optimizations that achieve the desired result
but keep the sizes of the states and messages bounded.

6.2 Parameters

Figure 13 declares the parameters of the specification. This section explains their intended meanings.
Acceptors will reside at locations in the bag accpts, Replicas at locations in reps, and Leaders at

locations ldrs . We will assume that none of these bags contains repetitions but do not assume that they
are disjoint.

The main program, given in figure 24, is

main Leade r @ l d r s | | Accepto r @ accp t s | | Rep l i c a @ r e p s

Instances of event classes implementing the Scout and Commander will be spawned by, and therefore
co-located with, Leader classes.

We use the function parameter ldrs uid to order the locations of leaders, and thereby to order the
ballot numbers; we therefore assume that it maps each element of ldrs to a different integer.

Cid is the type of client id’s. Recall: A user who sends the replicas a request to perform some operation
will tag the request with a value from Cid; the return value that the user receives will be tagged with
the same value. Clients should tag their requests sensibly, but the protocol doesn’t care how they do it.

The remaining parameters model the abstract state machine being replicated. It has a state, of type
RepState, whose initial value is init state . Inputs to the state machine, of type Op, name operations to
be performed. The transition function apply op takes an Op and RepState as arguments and returns a
pair consisting of a new RepState and an output value of type Result. Our current notion of configuration
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Figure 14 Paxos types and variables

type Ballot Num = ( Int ∗ Loc ) + Unit ; ;
type Command = Loc ∗ Cid ∗ Op ; ;
type Slot Num = Int ; ;
type Proposal = Slot Num ∗ Command ; ;
type PValue = Ballot Num ∗ Proposal ; ;
type PVl ist = PValue L i s t ; ;
type Rep l i caS tat e = RepState ∗ Slot Num ∗ Proposal L i s t ∗ Proposal L i s t ; ;

(∗ −−−−−− VARIABLES −−−−−− ∗)

v a r i ab l e loc , loc1 , l oc2 : Loc
v a r i ab l e cid , c id1 , c id2 : Cid
va r i ab l e op1 , op2 : Op
va r i ab l e s l t , s l t 1 , s l t 2 : Slot Num
var i ab l e bnum, bnum1 , bnum2 : Ballot Num
var i ab l e cmd : Command
va r i ab l e s t a t e : Rep l i caS tat e

file (section 8) is not rich enough to specify how to map these parameters to the actions of a state machine
we wish to replicate.

6.3 Types and variables

The types defined in figure 14 encode the types used in [Ren11]. This section a few details of the encoding
that may not be immediately obvious.

As noted, the ballot numbers are ordered. They are of two kinds: a “normal” ballot number is a
pair containing an integer and the location of a Leader; the “special” ballot number ⊥ is less than every
normal one. The type Ballot Num is therefore a disjoint union: the normal values belong to the left
hand side of the union and ⊥ is the unique element of the right hand side, represented by the value
dummy ballot = inr (). (This constant is declared later in the specification, along with the constants
used to represent initial values.)

Replicas use values of type Slot Num to index commands in the order in which they are to be per-
formed. These index values will always be positive integers. Although the type of positive integers is
definable in Nuprl, it is not definable in EventML. So we make Slot Num a synonym for Int .

Type ReplicaState represents values of the internal state of the process Replica defined in [Ren11], the
wrapper process that includes the state machines we want to replicate. The state variables proposals and
decisions that [Ren11] represents as sets of proposals we represent as lists of proposals; EventML does
not provide a type constructor for sets. (For technical reasons, explained in section 6.12, the internal
state of the event class Replica will contain one additional component.)

It will be an invariant that each of these lists is consistent in the following sense: A list of pairs is
consistent if, whenever it contains both 〈x, y〉 and 〈x, y′〉, then y = y′. It is possible in Nuprl to define a
type consisting of consistent lists, but such a type definition is not possible in EventML.

6.4 Imports

The SM∗−class operations and Memory3 are class combinators defined in section 4. The operations map,
deq−member, bag−size, and bag−remove have already been encountered in section 5.

• quicksort−int is what the name says: It sorts integer lists in ascending order via quicksort.

• If P : T → Bool and L : List(T ). Then
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Figure 15 Paxos imports

import map map f i l t e r deq−member
bag−append bl−e x i s t s bag−s i z e bag−remove
SM1−c l a s s SM2−c l a s s Memory3

– ( filter P L) is the sublist of L consisting of elements that satisfy P .

– If, in addition, f : T → T ′, then mapfilter f P = map f ( filter P L)

– (bl−exists L P ) returns a boolean; its value is true iff some element of L satisfies P .

• If f : S → T → S and y : S and xi : T then list accum f y [x1;x2;x3] = f (f (f y x1) x2) x3

6.5 Auxiliary functions

Figure 16 defines operations that perform a number of auxiliary bookkeeping duties. The reader should
consult it, and the explanations below, as needed.

6.5.1 Equality tests

Because their definitions make use of declared variables, the operations same command, same proposal,
and same pvalue are equality tests specifically for the types Command, Proposal, and PValue.

6.5.2 Operations on lists

As noted, we represent sets of proposals as lists of proposals. Each proposal is a pair consisting of a slot
number and a command. We need a few operations for querying and manipulating them.

in range deq z [(x1, y1); (x2, y2); ...]

is a boolean value that is true iff z is one of the yi. The argument deq denotes an operation that decides
equality among the y’s.

We also introduce two operations for adding elements to lists without introducing repetitions.

add if new eq [x1;x2; . . . ;xn] v =

{

[x1;x2; . . . ;xn] if v is one of the xi

[x1;x2; . . . ;xn; v] if not

The operator eq must be an appropriate equality decider. That requirement is enforced by typechecking,
because the definition of add if new contains the expression (eqof eq). The operation eqof is predefined
in EventML. If eq is an equality decider, (eqof eq) is eq; if not, (eqof eq) is ill-typed.

If eq is an equality decider, then

append new elems eq [x1; . . . ;xn] [y1; . . . ; ym] = [x1;x2; . . . ;xn; a1; . . . ; ak]

where the list of a’s contains one copy of each yi that is not an xj .

6.5.3 Operations on ballot numbers

The basic operations on ballot numbers are as follows:

• leq bnum is the less-then-or-equal-to relation.

leq bnum’ is an auxiliary used only to define leq bnum. As in [Ren11], normal ballot numbers are
ordered lexicographically; we use the function parameter ldrs uid to order leaders.
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Figure 16 Paxos part 1, auxiliaries

l e t same command ( loc1 , c id1 , op1 ) ( loc2 , c id2 , op2 ) = loc1 = loc2 & c id1 = c id2 ; ;
l e t same proposal ( s l t 1 , cmd1) ( s l t 2 , cmd2) = s l t 1 = s l t 2 & same command cmd1 cmd2 ; ;
l e t same pvalue (bnum1 , prp1 ) (bnum2 , prp2 ) = bnum1 = bnum2 & same proposal prp1 prp2 ; ;

l e t in domain deq x xys = deq−member deq x (map f s t xys ) ; ;

l e t add i f n ew t e s t val l s t =
i f bl−e x i s t s l s t ( t e s t val )
then l s t
e l s e l s t ++ [ val ] ; ;

l e t append news t e s t = l i s t a c cum (\ a .\ x . add i f n ew t e s t x a ) ; ;

l e t leq bnum’ ( i1 , l 1 ) ( i2 , l 2 ) = i1 < i 2 or ( i 1 = i2 & l d r s u i d l 1 <= ld r s u i d l 2 ) ; ;

(∗ l e q : Ballot Num → Ballot Num → Bool ; ; ∗)
l e t leq bnum bn1 bn2 = ! ( i s l bn1) or ( i s l bn1 & i s l bn2 & leq bnum’ ( ou t l bn1 ) ( ou t l bn2 ) ) ; ;

l e t lt bnum’ ( i1 , l 1 ) ( i2 , l 2 ) = i1 < i 2 or ( i 1 = i2 & l d r s u i d l 1 < l d r s u i d l 2 ) ; ;

l e t lt bnum bn1 bn2 =
( ! ( i s l bn1 ) & i s l bn2 )
or
( i s l bn1 & i s l bn2 & lt bnum’ ( ou t l bn1 ) ( ou t l bn2 ) ) ; ;

(∗ max : Ballot Num → Ballot Num → Ballot Num ; ; ∗)
(∗ I f t h ey ’ r e equal , we take bn2 . ∗)
l e t max bnum bn1 bn2 = i f leq bnum bn1 bn2 then bn2 e l s e bn1 ; ;

l e t pmax pva l s =
(∗ We keep only the ones where the s lot number i s = and the b a l l o t num i s > ∗)
l e t g bn s l t ( bn’ , ( s ’ , ) ) = s = s ’ & lt bnum bn bn’ in
(∗ P says that bn has to be a i s l . ∗)
l e t P (bn , ( s , c ) ) = ! ( bl−e x i s t s pva l s ( g bn s ) ) in

map f i l t e r snd P pva l s ; ;

l e t update p roposa l s p roposa l s1 p roposa l s2 =
l i s t a c cum (\ a .\ ( s l t , p ) .

i f bl−e x i s t s p roposa l s2 (\ ( s ’ , ) . s l t = s ’ )
then a
e l s e ( s l t , p) . a )

p roposa l s2
p roposa l s1 ; ;

(∗ A computed parameter ∗)
l e t th re sho ld = (bag−s i z e accp t s + 1) / 2 ; ;
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• lt bnum is the strict-less-then relation (defined from the auxiliary lt bnum’).

• max bnum bn1 bn2 returns the maximum of {bn1, bn2}.

6.5.4 Auxiliaries introduced in [Ren11]

pmax : PVlist → PVlist implements the operation pmax.

From a list pvs of pvalues, it produces a consistent list of proposals by giving preference to proposals
voted for in later ballots. More precisely, we’ll say that the proposal 〈n, c〉 is maximal in the list pvs if
for some ballot number b, 〈b, 〈n, c〉〉 ∈ pvs and for no ballot number b′ > b does pvs contain an element
of the form 〈b′, 〈n, 〉〉. Then pmax(pvs) consists of all the maximal elements of pvs . This will be a
consistent list of proposals provided that pvs is a consistent list of pvalues—that is, pvs does not contain
two entries having the same ballot number but different proposals. We will apply pmax only to consistent
lists of pvalues.

update proposals : PVlist → PVlist → PVlist implements the operator ⊕.

This is essentially the override operator for partial functions. If xs and ys are consistent lists of
proposals, then (update proposals xs ys) is consistent: it contains all the proposals in either list, except
that, when there is a conflict, the conflicting proposal from xs is omitted.

6.5.5 Iterating a Mealy machine

Consider the Mealy machine with input type I , state type S , output type Bag(R), and transition function
tr : I → S → S × Bag(R)

We use iterate tr to compute the result of applying this state machine to a sequence of inputs.
That is, if ops : List(I ) is the list of inputs to be processed and and init : S is the initial state then
( iterate tr tr init ops) is a pair 〈s, rs〉 ∈ S × Bag(R) such that s is the final state after consuming all
the inputs in ops , in order, and rs is the bag containing all the outputs produced along the way.

6.5.6 Class combinator: OnLoc

The polymorphic combinator OnLoc is primitive. For any type T and any function F : Loc → Class(T ),
(OnLoc F ) : Class(T ) is the event class that, at any location l , acts like the class (F l).

It is defined in the underlying computation model by OnLoc(F ) = λes.λe.(F loc(e) es e)

6.6 Interface

Figure 17 declares all the messages used in [Ren11]. The comments indicate who sends which kind of
message to whom. (Recall that each Scout and Commander is co-located with a Leader; so a message
sent to or from one of them is sent to or from the location of its Leader.)

6.7 Initial values

Figure 18 defines the initial values for various state machine classes. Note that the function init leader
assigns initial values to instances of Leader based on their locations: the initial ballot number for each
Leader is the least ballot number that it owns.

6.8 Acceptors

An Acceptor acts like a state machine. Its input events are the arrivals of p1a or p2a messages and its out-
puts are p1b and p2bmessages. Its state has type Ballot Num ∗ (PVlist), and is initially (dummy ballot,nil).
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Figure 17 Paxos part 1, interface

input reques t : Command (∗ c l i e n t → Repl ica ∗)
output re sponse : Cid ∗ Resu lt (∗ Repl ica → c l i e n t ∗)

i n t e r n a l p1a : Loc ∗ Ballot Num
(∗ Scout → Acceptor , The Loc i s the Scout ’ s leader , ∗)

i n t e r n a l p1b : Loc ∗ ( Ballot Num ∗ PVlist )
(∗ Acceptor → Scout , The Loc i s the Accep tor ’ s l o c a t i o n ∗)
i n t e r n a l p2a : Loc ∗ PValue
(∗ Commander → Acceptor , The Loc i s the Commander’s leader , ∗)

i n t e r n a l p2b : Loc ∗ Ballot Num
(∗ Acceptor → Commander , The Loc i s the Accep tor ’ s l o c a t i o n ∗)

i n t e r n a l preempted : Ballot Num
(∗ Commander , Scout→ Leader ∗)

i n t e r n a l adopted : Ballot Num ∗ PVlist
(∗ Scout → Leader ∗)

i n t e r n a l propose : Proposa l
(∗ Repl ica → Leader ∗)

i n t e r n a l d e c i s i o n : Proposal
(∗ Commander → Repl ica ∗)

Figure 18 Paxos initial values

l e t dummy ballot : Ballot Num = in r ( ) ; ;

l e t i n i t a c c e p t e d : PVl ist = [ ] ; ;
l e t i n i t a c c e p t o r = ( dummy ballot , i n i t a c c e p t e d ) ; ;

l e t i n i t s l o t num : Slot Num = 1 ; ;
l e t i n i t p r o p o s a l s : Proposa l L i s t = [ ] ; ;

l e t i n i t p v a l u e s : PVl ist = [ ] ; ;
l e t i n i t s c o u t = ( accpts , i n i t p v a l u e s ) ; ;

l e t i n i t b a l l o t num loc : Ballot Num = i n l (0 , l o c ) ; ;
l e t i n i t a c t i v e = f a l s e ; ;
l e t i n i t l e a d e r l o c = ( in i t b a l l o t num loc , i n i t a c t i v e , i n i t p r o p o s a l s ) ; ;

l e t i n i t d e c i s i o n s : Proposa l L i s t = [ ] ; ;
l e t i n i t l a t e s t d e c i s i o n : Proposal + Unit = in r ( ) ; ;
l e t i n i t r e p l i c a : Rep l i caS tat e = ( i n i t r s t a t e ,

i n i t s l o t num ,
i n i t p r op o s a l s ,
i n i t d e c i s i o n s ) ; ;
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Figure 19 Acceptor

l e t on p1a l o c ( , x ) ( bal lot num , accepted ) =
(max bnum x ballot num , accepted ) ; ;

l e t on p2a l o c ( , ( b , sp ) : PValue ) ( bal lot num , accepted ) =
l e t ba l l o t num’ = max bnum b ballot num in
l e t accep ted ’ = i f leq bnum ballot num b

then add i f n ew same pvalue (b , sp ) accepted
e l s e accepted in

( bal lot num’ , accep ted ’ ) ; ;

c l a s s AcceptorState =
SM2−c l a s s (\ l .{ i n i t a c c e p t o r })

( on p1a , p1a’base )
( on p2a , p2a’base ) ; ;

c l a s s AcceptorsP1a =
l e t f l o c ( ldr , ) bnum acc = {p1b’send ld r ( loc , bnum acc )}
in f o ( p1a’base , AcceptorState ) ; ;

c l a s s AcceptorsP2a =
l e t f l o c ( ldr , ) (bnum, ) = {p2b’send ld r ( loc , bnum)}
in f o ( p2a’base , AcceptorState ) ; ;

l e t Acceptor = AcceptorsP1a | | AcceptorsP2a ; ;

We first define the “post” Moore machine AcceptorState: s ∈ AcceptorState(e) iff s is the value of the
state after processing input event e. We then define Acceptor in terms of it, using the simple composition
combinator to compute the output(s) from the input and the state.

Since AcceptorState-events are the p1a’base-events and the p2a’base-events, we define AcceptorState
with the SM2−class combinator of section 4. The transition functions for these two kinds of inputs,
on p1a and on p2a, straightforwardly encode the updates to the state variables given in the pseudo-code
in Figure 2 of [Ren11], and described in section 6.1.3.

We similarly factor the definition of Acceptor into classes AcceptorsP1a and AcceptorsP2a responding
to the two kinds of inputs:

l e t Accepto r = AcceptorsP1a | | AcceptorsP2a ; ;

The definitions of these classes are similar, so consider the first:

c l a s s AcceptorsP1a =
l e t f l o c ( l d r , ) bnum acc = { p1b ’ send l d r ( l oc , bnum acc )}
i n f o ( p1a ’base , Accep to rS ta t e ) ; ;

An AcceptorsP1a-event is a p1a’base-event. (It must be both an AcceptorState-event and a p1a’base-event,
but every p1a’base-event is an AcceptorState-event.)

When the simple composition operator applies the local function f

• the loc parameter will match the location at which the input event occurs (the location of an
instance of Acceptor)

• ( ldr , ) will match the observation from p1a’base (the body of the incoming p1a message; so ldr is
the location of the Leader who spawned the Scout that sent this message)

• bnum acc will match the observation of AcceptorState (the state after the input event is processed)
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Figure 20 Paxos Commander

c l a s s CommanderNotify bsp = Output (\ l d r . p2a ’b roadcas t accp t s ( ldr , bsp ) ) ; ;

c l a s s CommanderState b =
l e t t r l o c ( loc , b ’ ) wa i t f o r =

i f b = b’ then bag−remove ( op =) wa i t f o r l o c e l s e wa i t f o r
in

SM1−c l a s s (\ .{ accp t s }) ( tr , p2b ’base ) ; ;

c l a s s CommanderOutput (b , ( s , p ) ) =
l e t f l d r (a , b ’ ) wa i t f o r =

i f b = b’
then i f bag−s i z e wa i t f o r < th re sho ld

then d e c i s i on ’b r o ad ca s t reps ( s , p)
e l s e {} (∗ keep look ing f o r major i ty ∗)

e l s e (∗ when b <> b’ , send preempted ∗)
{ preempted’send ld r b ’ }

in
Once( f o ( p2b’base , CommanderState b ) ) ; ;

c l a s s Commander bsp = CommanderNotify bsp | | CommanderOutput bsp ; ;

The output, {p1b’send ldr ( loc ,bnum acc)}, directs to ldr a p1b message containing the location and
state of the Acceptor that processes it.

Notice: AcceptorsP1a and AcceptorsP2a are not completely independent of one another. Each of them
reacts to inputs by changing the state in a way that could affect the behavior of the other. That is why
we use a single Moore machine AcceptorState, maintaining the whole state, to define the two Mealy
machines responding to the two different kinds of inputs.

6.9 Commanders

A Leader spawns a Commander that tries to elect a particular proposal on a particular ballot. So we
define a parameterized class Commander : PValue → Class(MSG). (Commander 〈b, 〈s , p〉〉) does two
things:

c l a s s Commander bsp = CommanderNotify bsp | | CommanderOutput bsp ; ;

The CommanderNotify component sends a p2a message to all the Acceptors (the locations in accpts)
and then terminates. The CommanderOutput component is a state machine whose input events are
p2b messages (received in response to its initial p2a broadcast). It will send decision messages to all the
Replicas or will send a preemptedmessage to the Leader the spawned it; having done either, it terminates.

To define CommanderOutput we first define the “post” Moore machine CommanderState. One dif-
ference from the previous case is worth noting: Every AcceptorState-event is an Acceptor-event (i.e.,
results in a nonempty bag of directed messages); but there will be CommanderState-events that are not
CommanderOutput-events.

For any b : Ballot Num we define (CommanderState b) with SM1−class, since its input events are of
just one kind, p2b messages. Its state is a bag of locations—the locations of all Acceptors from which it
has not yet received a p2b message about ballot number b. Thus, it is initially accpts.

Consider the definition of (CommanderOutput 〈b, 〈s , p〉〉). The decision logic in figure 3(a) of [Ren11] is
captured in the locally defined class f o (p2b’base,CommanderState b): It sends a preempted message if it
receives an input with an acceptance for some ballot number other than b; broadcasts a decision message
if it has received messages accepting ballot b from a majority of the acceptors; and otherwise makes no
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Figure 21 Paxos Scout

c l a s s ScoutNot i fy b = Output (\ l d r . p1a ’b roadcas t accp t s ( ldr , b ) ) ; ;

c l a s s ScoutState b =
l e t t r l o c ( loc , ( b’ , r : PVl ist ) ) ( wa i t fo r , pvalues ) =

i f b = b’
then l e t wa i t f o r ’ = bag−remove ( op =) wa i t f o r l o c in

l e t pva lu e s ’ = append news same pvalue pvalues r in
( wa i t f o r ’ , p v a lu e s ’ )

e l s e ( wa i t fo r , pvalues ) in
SM1−c l a s s (\ .{ i n i t s c o u t }) ( tr , p1b ’base ) ; ;

c l a s s ScoutOutput b =
l e t f l d r (a , ( b’ , r ) ) ( wa i t fo r , pvalues ) =

i f b = b’
then i f bag−s i z e wa i t f o r < th re sho ld

then { adopted ’send ld r (b , pvalues ) }
e l s e {}

e l s e { preempted’send ld r b ’ }
in

Once( f o ( p1b’base , ScoutState b ) ) ; ;

c l a s s Scout b = ScoutNot i fy b | | ScoutOutput b ; ;

output. Events falling through to the last case are CommanderState-events but not CommanderOutput-
events. By applying the Once combinator to this class (which corresponds to the exit statements in the
pseudo-code) we guarantee that there can be at most one CommanderOutput-event.

6.10 Scouts

A Leader spawns a Scout to get a particular ballot number adopted (if possible). So Scout : Ballot Num →
Class(MSG). Its definition is structured identically to that of Commander. It consists of a “notify”
component that broadcasts p1a messages and an “output” component that tallies reponses to them.
It will either send an adopted message to all Leaders or send a preempted message to the Leader that
spawned it.

c l a s s Scout b = Scou tNo t i f y b | | ScoutOutput b ; ;

Following the previous pattern we first define the “post” Moore machine ScoutState. The (ScoutState b)-
events are p1b messages. The “relevant” messages, which cause state changes, are those that concern
ballot b. The type of its state is List(Loc)× PVlist . The first component is the list of all Acceptors from
whom it has not yet received a relevant message; the second is the list of all pvalues it has received in
relevant messages.

In the definition of ScoutOutput from ScoutState the local function f captures the decision logic of
Figure 3(b) of [Ren11], and also described in section 6.1.3.

6.11 Leaders

A Leader spawns a Scout and thereafter can spawn a Commander in response to a propose or adopted
message, or it can spawn a Scout in response to a preempted message:
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Figure 22 Paxos Leader

l e t on propose l o c ( ( s , p ) : Proposa l ) ( bal lot num , ac t iv e , p roposa l s ) =
l e t p r op o s a l s ’ =

i f in domain ( op =) s p roposa l s
then proposa l s
e l s e add i f n ew same proposal ( s , p ) p roposa l s

in ( bal lot num , ac t iv e , p r op o s a l s ’ ) ; ;

l e t when adopted l o c (bnum, pva l s ) ( bal lot num , ac t iv e , p roposa l s ) =
i f bnum = ballot num
then l e t p r op o s a l s ’ = update p roposa l s p roposa l s (pmax ( pva l s : PVl ist ) )

in ( bal lot num , true , p r op o s a l s ’ )
e l s e ( bal lot num , ac t iv e , p roposa l s ) ; ;

l e t when preempted ld r bnum ( ballot num , ac t iv e , p roposa l s ) =
i f i s l bnum & lt bnum ballot num bnum
then l e t ( r ’ , l o c ’ ) = out l bnum in ( i n l ( r ’ + 1 , l d r ) , f a l s e , p roposa l s )
e l s e ( bal lot num , ac t iv e , p roposa l s ) ; ;

c l a s s LeaderState =
Memory3 (\ l .{ i n i t l e a d e r l })

on propose p ropose ’base
when adopted adopted ’base
when preempted preempted’base ; ;

c l a s s LeaderPropose =
l e t f l o c ( s l t , p) ( bal lot num , ac t iv e , p roposa l s ) =

i f a c t i v e & ! ( in domain ( op =) s l t p roposa l s )
then {( bal lot num , ( s l t , p ) )}
e l s e {} in
f o ( propose ’base , LeaderState ) ; ;

c l a s s LeaderAdopted =
l e t f l o c (bnum, , props ) = (map (\ sp . (bnum, sp ) ) props )/˜ in

f o ( adopted’base , LeaderState ) ; ;

c l a s s LeaderPreempted =
l e t f l d r bnum ( ballot num , , ) =

i f i s l bnum & lt bnum ballot num bnum
then { i n l ( f s t ( ou t l bnum) + 1 , l d r )}
e l s e {} in
f o ( preempted’base , LeaderState ) ; ;

c l a s s SpawnFirstScout = OnLoc(\ l d r . Scout ( i n l ( 0 , l d r ) ) ) ; ;

c l a s s Leader = SpawnFirstScout
| | ( ( LeaderPropose | | LeaderAdopted ) >>= Commander )
| | ( LeaderPreempted >>= Scout ) ; ;
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c l a s s Leade r = SpawnFi r s tScout
| | ( ( Leade rPropose | | LeaderAdopted ) >>= Commander )
| | ( LeaderPreempted >>= Scout ) ; ;

At any location ldr , SpawnFirstScout acts like the class (Scout inl(〈0, ldr 〉)). (Recall that 〈0, ldr 〉 is
the least ballot that the Leader at ldr owns.) To install an appropriate class at each location we use the
primitive OnLoc introduced in section 6.5.6:

c l a s s SpawnFi r s tScout = OnLoc(\ l d r . Scout ( i n l ( 0 , l d r ) ) ) ; ;

The state of a Leader, LeaderState, is a “pre” Moore machine defined with Memory3. The tran-
sition functions corresponding to its three kinds of input messages are on propose, when adopted, and
when preempted. The type of its state is Ballot Num ∗ Bool ∗ (Proposal List ). As noted in section 6.1.2,
the Bool component of a Leader’s state indicates whether the current Ballot Num component is active
or not; the (Proposal List ) component is a consistent list of proposals, the proposals that the Leader is
currently working on.

c l a s s Leade rS ta t e =
Memory3 (\ l .{ i n i t l e a d e r l })

on p ropo s e p r o po s e ’ b a s e
when adopted adop t ed ’ba s e
when preempted p re empted ’ba s e ; ;

We define the Mealy machines LeaderPropose, LeaderAdopted, and LeaderPreempted from LeaderState.
Consider the last of these:

c l a s s LeaderPreempted =
l e t f l d r bnum ( ba l l o t num , , ) =

i f i s l bnum & lt bnum ba l l o t num bnum
then { i n l ( f s t ( o u t l bnum) + 1 , l d r )}
e l s e {} i n
f o ( p reempted ’base , Leade rS ta t e ) ; ;

By the definition of simple composition every LeaderPreempted-event must be both the arrival of a
preempted message and a LeaderState-event (though the converse needn’t be true, and in general won’t
be). But every event is a LeaderState-event.

When applying the local function f,

• ldr matches the location of the Leader at which the preempted event occurs;

• bnum matches the ballot number sent in the preempted message;

• (ballot num, , ) matches the state of the Leader when the message arrives; so, in particular,
ballot num matches the current ballot number.

Consider the condition in the conditional expression for f. The conjunct ( isl bnum) is true when bnum
is not dummy ballot. In fact, an invariant of the protocol guarantees that this will always be true, but
the test is included so that the declaration will typecheck statically, without knowing that invariant.16

Thus, execution will take the then branch (and LeaderPreempted will spawn a Scout) iff bnum is greater
than the ballot number in the Leader’s state.

The only important fact about inl ( fst (outl bnum) + 1,ldr), the ballot number passed to the spawned
Scout, is that it belongs to the Leader at location ldr and is greater than bnum.

6.12 Replicas

In order to define a class that is a state machine, we have repeatedly used the strategy of defining a Mealy
machine from a Moore machine. We do that again, but in a way that may seem backwards. ReplicaAux

16It’s needed so that the subterm outl bnum will typecheck.
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Figure 23 Paxos Replica

l e t ou t t r t r l o c x ( s , ) = t r x s ; ;

(∗ f i r s t u n o c c u p i e d ps = l e a s t p o s i t i v e i n t e g e r that i s ∗not∗ a member o f ps ∗)
l e t f i r s t u n o c c u p i e d ( ps : Slot Num L i s t ) =

l i s t a c cum (\ a .\ x . i f x = a then a + 1 e l s e a ) 1 ( qu i ck sor t−i n t ps )
; ;

l e t propose p ( rs , sn , prs , dcs ) =
i f in range ( op =) p dcs
then ( ( rs , sn , prs , dcs ) , {})
e l s e l e t s ’ = f i r s t u n o c c u p i e d ( domain ( prs ++ dcs ) ) in

l e t p r s ’ = add i f n ew ( op =) prs ( s ’ , p) in
l e t msgs = propose ’b roadcas t l d r s ( s ’ , p) in

( ( rs , sn , p r s ’ , dcs ) , msgs ) ; ;

l e t perform (cmd : Command) ( ( r s ta t e , slot num , proposa ls , d e c i s i o n s ) : Rep l i caS tat e ) =
l e t ( c l i e n t , c id , ope ) = cmd in

i f bl−e x i s t s d e c i s i o n s (\ ( s , c ) . s < s lot num & c = cmd)
then ( ( r s ta t e , s lot num + 1 , proposa ls , d e c i s i o n s ) ,{} )
e l s e l e t ( next , r e s u l t ) = apply op ope r s t a t e in

l e t new state = ( next , s lot num + 1 , proposa ls , d e c i s i o n s ) in
( new state , { r e sponse ’ s end c l i e n t ( cid , r e s u l t )} )

; ;

l e t i n n e r t r p ’ s t a t e = (∗ app l i ed when (n , p ’ ) \ in dec ided ∗)
l e t ( r s ta t e , slot num , proposa ls , d e c i s i o n s ) = s t a t e in
l e t to r ep ropose = map f i l t e r snd (\ (m, p ’ ’ ) . m = slot num & ! ( p ’ ’ = p’ ) ) p roposa l s in
l e t ( new state , proposes ) = i t e r a t e t r propose s t a t e to rep ropose in
l e t ( new stat e ’ , r e sponse s ) = perform p’ new state in

( new stat e ’ , bag−append proposes r e sponse s ) ; ;

(∗ Each i t e r a t i o n o f i n n e r t r performs one operat ion and a l s o f i n d s
∗ a l l e lements o f p roposa l s shar ing the s l o t number o f the operat ion
∗ performed and rep ropose s them . I t does the rep ropos ing f i r s t ∗)

l e t r e p l i c a d e c i s i o n v ( ( r s ta t e , slot num , proposa ls , d e c i s i o n s ) : Rep l i caS tat e ) =
l e t d e c i s i o n s ’ = add i f n ew ( op =) d e c i s i o n s v in
l e t ready = map f i l t e r snd (\ ( s , ) . s = slot num ) d e c i s i o n s ’ in

i t e r a t e t r i n n e r t r ( r s ta t e , slot num , proposa ls , d e c i s i o n s ’ ) ready ; ;

c l a s s ReplicaAux =
SM2−c l a s s (\ . { ( i n i t r e p l i c a ,{} )} )

( ou t t r propose , r e qu e s t ’ b a s e )
( ou t t r r e p l i c a d e c i s i o n , d e c i s i o n ’ b a s e ) ; ;

c l a s s Rep l ica = (\ . snd ) o ReplicaAux ; ;
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is a Moore machine whose internal state has type ReplicaState ∗ Message Bag. Replica is the projection
of this onto the second component, returning only the messages:

c l a s s R ep l i c a = (\ . snd ) o Rep l i caAux ; ;

To derive a Mealy machine from a Moore machine we must be able to compute the outputs from
the input and the (resulting) state. Consider how a Replica acts. In response to an input it may take a
sequence of steps, each of which changes the internal state of the Replica (by executing a command and
by updating bookkeeping information) and sends a message. The pseudo-code of [Ren11] carries that out
in a loop. A Replica event class must respond to an input by making a transition to the final state (at the
end of the loop) and returning a bag that contains all the messages produced by that entire sequence of
steps. We cannot compute that bag of messages just from the input value and the final state—at least,
we cannot do so if the final state is simply a value of type ReplicaState. That is why the state type of
ReplicaAux is ReplicaState ∗ Message Bag.

We use SM2−class to factor the definition of ReplicaAux in terms of its response to propose messages
and to decision messages.

The auxiliary function out tr lifts a transition function tr for a Mealy machine with inputs A, outputs
Msgs, and internal state ReplicaState

tr : I → ReplicaState → ReplicaState × Bag(Msgs)

to an equivalent transition function out tr tr for a Moore machine with inputs I and internal state
ReplicaState × Bag(Msgs):

out tr tr : Loc → I → ReplicaState × Bag(Msgs) → ReplicaState × Bag(Msgs)

The initial argument of type Loc is ignored. It’s included so that out tr tr will have the type required
of an argument to SM2−class.

The operation

propose : Proposal → ReplicaState → ReplicaState × Bag(Msgs)

encodes the propose operation of [Ren11], which a Replica performs in response to a propose mes-
sage. Thus (out tr propose) lifts this to a transition function for ReplicaAux. (Note: propose invokes
first unoccupied , which finds the first empty slot in a list of proposals by a logically correct, but woefully
inefficient procedure; it begins by sorting its input. There’s no point in defining a more efficient one,
because a real implementation would implement propose differently, to avoid accumulating an unbounded
list of proposals in the state of the Replica.)

The operation

perform : Command → ReplicaState → ReplicaState × Bag(Msgs)

encodes the perform operation of [Ren11]. In response to a decision message a Replica may invoke
this repeatedly in a loop: inner tr does one iteration of the loop; ( iterate tr inner tr ) executes the
loop, accumulating all the messages to be sent; and replica decision encodes the entire response. Thus
(out tr replica decision ) lifts this to the other transition function for ReplicaAux.

c l a s s Rep l i caAux =
SM2−c l a s s (\ . { ( i n i t r e p l i c a ,{ } )} )

( o u t t r propose , r e q u e s t ’ b a s e )
( o u t t r r e p l i c a d e c i s i o n , d e c i s i o n ’ b a s e ) ; ;
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Figure 24 Paxos main program

main Leader @ l d r s | | Acceptor @ accp t s

7 Definitions of combinators

General simple composition
Section 3.1 introduces the simple composition combinator. Given n classes X1 , . . . , Xn , of types T1 ,

. . . , Tn respectively, and given a function F of type Loc → T1 → · · · → Tn → Bag(T ), one can define
the class F o (X1 , · · · ,Xn). This combinator is defined in terms of one of the Logic of Events’ primitive
combinators. Given n classes X1 , . . . , Xn , of types T1 , . . . , Tn respectively, and given a function F of
type Loc → Bag(T1 ) → · · · → Bag(Tn ) → Bag(T ), the class F O (X1 ; · · · ;Xn) is one of the Logic of
Events’ primitive combinator. The class F o (X1 , · · · ,Xn) is defined as:

(λloc. λb1 . . . . λbn .
⋃

x1∈b1

· · ·
⋃

xn∈bn

F loc x1 · · · xn) O (X1 ; · · · ;Xn)

Until
The binary infix operator until can then be defined in terms of this more general simple composition

combinator as follows:

import bag−n u l l ; ;

c l a s s u n t i l X Y =
l e t F l o c b1 b2 = i f bag−n u l l b2 then b1 e l s e {}
i n F o (X, P r i o r (Y) ) ; ;

i n f i x u n t i l ; ;

The bag−null function is a function that returns true iff its argument is the empty bag. Note that using
an infix declaration, one can declare infix operators in EventML.

Once
The Once operator can be defined in terms of the until operator as follows:

c l a s s Once X = (X u n t i l X) ; ;

Output
The Output operator can be defined in terms of the Once operator as follows:

c l a s s Output b = Once (b o ( ) ) ; ;

The “at” combinator
The binary infix operator @ can be defined in terms of the simple combinator as follows:

import bag−deq−member ; ;
c l a s s @ X l o c s =

l e t F l o c x = i f bag−deq−member ( op =) l o c l o c s then {x} e l s e {}
i n F o X ; ;

i n f i x @ ; ;
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(Note that this code is not valid EventML code because @ is not a valid identifier.)

Parallel combination
The parallel combinator can be defined in terms of the more general simple combinator as follows:

c l a s s | | X Y = (\ l o c .\ b1 .\ b2 . b1++b2 ) o (X,Y) ; ;
i n f i x | | ; ;

(Note that this code is not valid EventML code because || is not a valid identifier.)

Disjoint union
The disjoint union class combinator. X (+) Y is a class of type A + B that recognizes both X-events

and Y-events. The observations made by X are tagged with inl and the observations made by Y are
tagged with inr :

c l a s s X (+) Y = ((\ .\ x .{ i n l ( x )} ) o X) | | ( (\ .\ x .{ i n r ( x )} ) o Y) ; ;

If (and only if) e is both an X-event and a Y-event, X (+) Y(e) is a bag with two elements.

SM1-class, . . . , Memory1, . . .
For any n, the combinators SMn class and Memoryn are defined in section 4.

8 Configuration files

Parameters to our specifications are of two kinds. Some are “abstract”—e.g., the integer parameters
threshold (see section 3.2) and flrs (see section 5). We can instantiate these by providing a Nuprl term
of type integer. Others are “real world”—e.g., the parameter client of type location. Their meanings are
specific to a particular installation of EventML: the messaging system determines what must be supplied
to instantiate a location parameter. Our prototype assumes that messaging is by TCP/IP, and a location
is a pair consisting of an IP address and a port.17

The parameter declarations

paramete r nodes : Loc Bag ; ;
pa ramete r c l i e n t : Loc ; ;
pa ramete r u i d : Loc → I n t ; ;

illustrate the open-ended nature of real world parameters.
Suppose that we supply an (IP address, port) pair for client and a list of such pairs for nodes.18 How

do we instantiate uid? Knowing the locations, we could simply define a function that assigns integers to
them. If we wanted a more flexible implementation, we might want to base uid on the MAC address of a
node’s network card; in that case the configuration file would provide some reference to a piece of code
that does the computation. For now, the only primitive real-world type that we allow is Loc. All other
parameter types must be intepretable from Loc and abstract types.

Here is what a configuration file looks like:

17Note that TCP/IP provides stronger guarantees—namely, FIFO delivery—than our examples have assumed.
18Computationally, a bag is just a list in which we ignore the order.
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%l o c a t i o n s
n1 : 1 9 2 . 1 6 8 . 0 . 1 2 19777
n2 : 1 9 2 . 1 6 8 . 0 . 1 3 19778
n3 : 1 9 2 . 1 6 8 . 0 . 1 4 19779

%pa ramete r s
nodes : {LOC( n1 ) ; LOC( n2 ) ; LOC( n3 )}
c l i e n t : LOC( c l i e n t )
u i d : \ l . i f l = LOC( n1 ) then 1 e l s e i f l = LOC( n2 ) then 2 e l s e 3

%messages
n1 : ( ‘ ‘ c o n f i g ‘ ‘ , I n t ∗ Loc , (1 , LOC( n2 ) ) )
n2 : ( ‘ ‘ c o n f i g ‘ ‘ , I n t ∗ Loc , (1 , LOC( n3 ) ) )
n3 : ( ‘ ‘ c o n f i g ‘ ‘ , I n t ∗ Loc , (1 , LOC( n1 ) ) )
n2 : ( ‘ ‘ choose ‘ ‘ , I n t , 1)

This is an example of a configuration file for the leader election in a ring protocol presented in section 3.3.
A configuration file is divided into three parts: the locations part declares the machines on which one
wishes to install the specified protocol (n1 is a location name which is specified by the IP address
192.168.0.12 and the port number 1977); the parameters part instantiates the parameters declared in
the given specification (the leader election in a ring specification presented in section 3.3 declares three
parameters: nodes, client , and uid); the messages part declares a bag of messages initially in transit.
One has to declare at least one message in transit because EventML allows on to define reactive agents
that can only react on receipt of messages. Therefore nothing happens as long as no message is received.

9 EventML’s syntax

Identifiers
An identifier can either be alphanumeric or symbolic. An alphanumeric identifier is a sequence of

letters, digits, primes (quotes), dashes and underscores starting with a letter. For example, bag map,
bag−map, bag−map’, and bag−map1 are identifiers, but 1bag−map is not. A symbolic identifier is
a sequence of the following symbols: !, %, &, #, /, <, =, ?, \, ˜, ˆ, | , >, −, : , +, @, ∗. Some
alphanumerics as well as some symbolic identifiers are disallowed because they are reserved keywords.
They are described in Figures 25 and 26 bellow.

Let Vid be the set of identifiers and let vid range over identifiers.

Type variables
A type variable is an alphanumeric identifier preceded by primes (quotes). For example, ’a and ’’a

are type variables
Let TyVar be the set of type variable and let a range over type variables.

Character sequences
Let CharSeq be the set of sequences of characters other than backquotes (`) and let cseq range over

CharSeq.

Other syntactic forms
Figures 25 and 26 defines EventML’s syntax. In this figure we write pxq to indicate that x is optional.

These brackets are not part of EventML’s syntax. For example, a program prog can either be a declaration
followed by two semicolons, or a declaration followed by two semicolons followed by another program (it
allows us to define recursive production rules).

We also impose the following syntactic restrictions:

• In a program, a declaration of the form specification vid has to be the first declaration and
there can only be one.
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Figure 25 EventML syntax – expression

n ∈ Nat (natural numbers)
ptc ∈ PostTyC ::= Int | List | Bool | Unit | Bag | Class | Msg | Loc | Token
itc ∈ InfTyC ::= ∗ |→ | +
b ∈ Bool = true | false
op ∈ Op ::= + | - | * | / | = | . | ++ | < | > | or | & | >>= | || | @
atexp ∈ AtExp ::= vid | n | b | ∼atexp | inl(exp) | inr(exp)

| (exp
1
, . . . , exp

n
)

| {exp
1
; . . . ; exp

n
}

| Prior(exp)
| Once(exp)
| Output(exp)
| OnLoc(exp)
| (exp)

exp ∈ Exp ::= atexp

| atexp/∼
| exp o (exp

1
, · · · , exp

n
p, Prior(self)?exp ′

q)
| exp

1
op exp

2

| exp:ty

| exp atexp

| \pat.exp
| if exp

1
then exp

2
else exp

3

| let bind in exp

| letrec bind in exp

| class bind in exp

| atexp where bind

pat ∈ Pat ::= vid

|
| (pat

1
, . . . , pat

n
)

| pat:ty

tyseq ∈ TySeq ::= ǫ

| ty

| (ty
0
, . . . , ty

n
)

ty ∈ Ty ::= a

| tyseq ptc

| ty
1
itc ty

2

| (ty)

• In a program, a declaration of the form main exp has to be the last declaration and there can only
be one.

• In an expression of the form letrec bind in exp′, where bind is of the form vid atpat1 · · · atpatn = exp,
either n >= 1 or exp is a lambda expression the form \pat.exp′′ (i.e., a recursive declaration can
only bind a function).

• In a declaration of the form letrec bind;;, where bind is of the form vid atpat1 · · · atpatn = exp,
either n >= 1 or exp is a lambda expression (i.e., of the form \pat.exp′).
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