
Introduction to Classic ML

Christoph Kreitz and Vincent Rahli

Department of Computer Science, Cornell-University

Ithaca, NY 14853-7501, U.S.A.

1 The History of ML

Several versions of the programming language ML have appeared over the years, between the
time it was first designed and implemented by Milner, Morris and Wadsworth at the University of
Edinburgh in the early 1970’s, and the time it was settled and standardized in the mid-1980’s. The
original ML, the meta-language of the Edinburgh LCF system, is defined in [GMW79].

The ML used in the Nuprl [CAB+86, Kre02, ABC+06] system is fairly close to the original.
It is derived from a early version that Huet at INRIA and Paulson at the University of Cambridge
were working on in 1981. Todd Knoblock at Cornell made most of the Nuprl specific modifications
in the mid-1980’s. Nuprl’s ML hasn’t changed since then and is not compatible with the ML

versions that are widely used today.

The ML of Huet and Paulson is described in the preface to ‘The ML Handbook ’ [CHP84].
Huet used this version in the Formel project; and it subsequently evolved into a version of ML

called CAML. Paulson also used it, as part of the first version of Cambridge LCF, but switched to
Standard ML [MTH90, MTHM97] in the later versions of Cambridge LCF [Pau87].

The CAML language [CH90, WAL+90] is now rarely used. But there is a scaled down version
called CAML-Light which is actively used in teaching programming to over 10,000 engineers a year
in France. Its object-oriented version OCaml [Ler00] have become quite popular in recent years
and has been used in the implementation of the group communication toolkit Ensemble [Hay98,
BCH+00]. It is also the implementation language of the Coq [BC04] theorem prover. OCaml has
directly influenced the design of the Microsoft language F# [SGC07]. The Standard ML language
has also become increasingly popular for implementing theorem provers such as HOL [GM93] or
Isabelle [Pau90].

The description of ML that appears in the following Sections is based very closely on ‘The ML

Handbook’ [CHP84]. It was adapted for Nuprl purposes from LATEX sources provided by the HOL

theorem proving group in Cambridge. For completeness (and historical interest), the preface to
‘The ML Handbook ’ and the preface to ‘Edinburgh LCF: a Mechanised Logic of Computation’ are
reproduced below.

1

1.1 Preface to ‘The ML Handbook’

This handbook is a revised edition of Section 2 of ‘Edinburgh LCF’, by M. Gordon, R. Milner, and
C. Wadsworth, published in 1979 as Springer Verlag Lecture Notes in Computer Science no 78.
ML was originally the meta-language of the LCF system. The ML system was adapted to Maclisp
on Multics by Gérard Huet at INRIA in 1981, and a compiler was added. Larry Paulson from the
University of Cambridge completely redesigned the LCF proving system, which stabilized in 1984
as Cambridge LCF. Guy Cousineau from the University Paris VII added concrete types in the
summer of 1984. Philippe Le Chenadec from INRIA implemented an interface with the Yacc parser
generator system, for the versions of ML running under Unix. This permits the user to associate
a concrete syntax with a concrete type.

The ML language is still under design. An extended language was implemented on the VAX
by Luca Cardelli in 1981. It was then decided to completely re-design the language, in order to
accommodate in particular the call by pattern feature of the language HOPE designed by Rod
Burstall and David MacQueen. A committee of researchers from the Universities of Edinburgh
and Cambridge, the Bell Laboratories and INRIA, headed by Robin Milner, is currently working
on the new extended language, called Standard ML. Progress reports appear in the Polymorphism
Newsletter, edited by Luca Cardelli and David MacQueen from Bell Laboratories. The design of a
core language is now frozen, and its description will appear in a forthcoming report of the University
of Edinburgh, as ‘The Standard ML Core Language’ by Robin Milner.

This handbook is a manual for ML version 6.1, released in December 1984. The language is
somewhere in between the original ML from LCF and standard ML, since Guy Cousineau added
the constructors and call by patterns. This is a LISP based implementation, compatible for Maclisp
on Multics, Franzlisp on VAX under Unix, Zetalisp on Symbolics 3600, and Le Lisp on 68000, VAX,
Multics, Perkin-Elmer, etc... Video interfaces have been implemented by Philippe Le Chenadec on
Multics, and by Maurice Migeon on Symbolics 3600. The ML system is maintained and distributed
jointly by INRIA and the University of Cambridge.

1.2 Preface to ‘Edinburgh LCF’

ML is a general purpose programming language. It is derived in different aspects from ISWIM,
POP2 and GEDANKEN, and contains perhaps two new features. First, it has an escape and escape
trapping mechanism, well-adapted to programming strategies which may be (in fact usually are)
inapplicable to certain goals. Second, it has a polymorphic type discipline which combines the
flexibility of programming in a typeless language with the security of compile-time type checking
(as in other languages, you may also define your own types, which may be abstract and/or recursive).

For those primarily interested in the design of programming languages, a few remarks here may
be helpful both about ML as a candidate for comparison with other recently designed languages,
and about the description of ML which we provide. On the first point, although we did not set out
with programming language design as a primary aim, we believe that ML does contain features
worthy of serious consideration; these are the escape mechanism and the polymorphic type discipline
mentioned above, and also the attempt to make programming with functions—including those of
higher type—as easy and natural as possible. We are less happy about the imperative aspects of the
language, and would wish to give them further thought if we were mainly concerned with language
design. In particular, the constructs for controlling iteration both by boolean conditions and by
escape-trapping (which we included partly for experiment) are perhaps too complex taken together,

2

and we are sensitive to the criticism that escape (or failure, as we call it) reports information only
in the form of a string. This latter constraint results mainly from our type discipline; we do not
know how best to relax the constraint while maintaining the discipline.

Concerning the description of ML, we have tried both to initiate users by examples of program-
ming and to give a precise definition.

2 Introduction and Examples

2.1 Classic ML versus EventML

The EventML language has emerged from mixing Classic ML with a logic called Logic of
Events [Bic09, BC08, BCG11]. This document presents the ML part of the EventML language
and makes explicit when EventML’s syntax varies from Classic ML.

2.2 Sessions

When writing ML pieces of code, typically users write global (or top-level) declarations (see Sec-
tion 2.4 below) in a file and evaluate expressions (see Section 2.3 below) in a ML session. The
fact that global declarations can only be written in a file and not in a session comes from using
EventML sessions which do not allow global declarations. Note that there are ML sessions other
than EventML sessions that allow such global declarations (such as the ones used in Nuprl).

Each example presented below follows the same schema: it is split into two boxes, the left box
being a ML session running on the file partially displayed in the right box. Also, each example
is self-contained in the sense that each time an example makes use of a global declaration, this
declaration is in the right part of the example.

EventML provides ways to use functions defined in a library file (extracted from Nuprl)
that is distributed with EventML. One way is to use import declaration. Many functions can
be imported such as functions to deal with lists (see, e.g., Section 2.7). EventML comes with an
Emacs UI that provides a feature to display the available functions (the provided library can also
be consulted in any other text editor).

2.3 Expressions

In this tutorial, the ML prompt is # (the EventML prompt is EventML#), so lines beginning with
this contain the user’s contribution; all other lines are output by the system.

1# 2 + 3;;

5 : Int

ML prompted with #, the user then typed
x
2 + 3;;

y
followed by a carriage return ←| ; ML

then responded with
x
5 : int

y
, a new line, and then prompted again. In general to evaluate an

expression e one types e followed by a carriage return; the system then prints e’s value and type
(the type prefaced by a colon).

2.4 Declarations

The declaration let x = e evaluates e and binds the resulting value to x.

3

2# x;;

6 : Int

let x = 2 * 3;;

To bind the variables x1, . . . , xn simultaneously to the values of the expressions e1, . . . , en one
can perform the declaration let (x1,x2,...,xn) = (e1,e2...,en).

3# x;;

10 : Int

y;;

6 : Int

let x = 2 * 3;;

let y = 10;;

let (x, y) = (y, x);;

A declaration d can be made local to the evaluation of an expression e by evaluating the
expression let d in e (or equivalently e where d).

4# let x = 2 in x * y;;

12 : Int

(x * y) where x = 2;;

12 : Int

let x = 2 * 3;;

let y = 10;;

let (x, y) = (y, x);;

2.5 Functions

To define a function f with formal parameter x and body e one performs the declaration
let f x = e. To apply the function f to an actual parameter e one evaluates the expression f e.

5# f;;

- : Int -> Int

f 4;;

8 : Int

let f x = 2 * x;;

Functions are printed as a dash, -, followed by their type, since a function as such is not
printable. Application binds more tightly than anything else in the language; thus, for example,
f 3 + 4 means (f 3) + 4 not f (3 + 4). Functions of several arguments can be defined:

6# plus 3 4;;

7 : Int

f 4;;

7 : Int

let plus x y = x + y;;

let f = plus 3;;

Application associates to the left so plus 3 4 means (plus 3) 4. In the expression plus 3,
the function plus is partially applied to 3; the resulting value is the function of type int -> int

which adds 3 to its argument. Thus plus takes its arguments one at a time. We could have made
plus take a single argument of the cartesian product type (int * int):

4

7
plus(3,4);;

7 : Int

let z = (3,4) in plus z;;

7 : Int

plus 3;;

[ERROR]

kind:

type constructor clash between Int and *

slice:

〈..let plus (〈..〉, 〈..〉) = 〈..〉;;
..plus 3;;

..〉

Untypable.

let plus(x,y) = x + y;;

As well as taking structured arguments (e.g. (3,4)) functions may also return structured results.

8
sumdiff(3,4);;

(7, ~1) : Int * Int

let sumdiff(x,y) =

(x + y, x - y)

;;

2.6 Recursion

The following is an attempt to define the factorial function:

9let fact n =

if n=0

then 1

else n*fact(n-1);;

Given this piece of code the type checker returns the following error message:

[ERROR]
kind: fact is a free identifier
slice: 〈..fact;;..〉

The problem is that any free variables in the body of a function have the bindings they had just
before the function was declared; fact is such a free variable in the body of the declaration above,
and since it is not defined before its own declaration, an error results. To make things clear consider:

10# f 3;;

9 : Int

let f n = n + 1;;

let f n =

if n = 0

then 1

else n * f(n - 1);;

Here f 3 results in the evaluation of 3 * f(2), but now the first f is used so f(2) evaluates to
2 + 1 = 3, hence the expression f 3 results in 3 * 3 = 9. To make a function declaration hold
within its own body, letrec instead of let must be used. The correct recursive definition of the
factorial function is thus:

5

11# fact 3;;

6 : Int

letrec fact n =

if n = 0

then 1

else n * fact(n - 1);;

2.7 Lists

If e1, . . . , en all have type ty then theML expression [e1;. . .;en] has type (ty List). The standard
functions on lists are hd (head), tl (tail), null (which tests whether a list is empty – i.e. is equal
to []), and the infixed operators . (cons) and ++ (append, or concatenation). The functions hd,
tl, and null need to be imported to be usable.

12# m;;

m = [1; 2; 3; 4] : Int List

(hd m , tl m);;

(1, [2; 3; 4]) : Int * (Int List)

(null m , null []);;

(false, true) : Bool * Bool

0.m;;

[0; 1; 2; 3; 4] : Int List

[1; 2] ++ [3; 4; 5; 6];;

[1; 2; 3; 4; 5; 6] : Int List

[1;true;2];;

[ERROR]

kind: type constructor clash between

Int and Bool

slice: 〈..[1; true; 〈..〉];;..〉

[ERROR]

kind: type constructor clash between

Bool and Int

slice: 〈..[〈..〉; true; 2];;..〉

Untypable.

import tl hd null;;

let m = [1;2;(2 + 1);4];;

All the members of a list must have the same type (although this type could be a sum, or
disjoint union type—see Section 4).

2.8 Atom

A non-empty sequence of characters enclosed between token backquotes (‘ – i.e. ascii 96) is an
atom (also called a token).

6

13# t;;

‘an atom‘ : Atom

ts;;

[‘an‘; ‘atom‘; ‘list‘] : Atom List

ts = ‘‘an atom‘‘ ++ [‘list‘];;

true : Bool

let t = ‘an atom‘;;

let ts = ‘‘an atom list‘‘;;

The expression ‘‘atom
1
atom

2
...atom

n
‘‘ is an alternative syntax for [‘atom

1
‘;‘atom

2
‘;...;‘atom

n
‘].

2.9 Polymorphism

The list processing functions hd, tl etc. can be used on all types of lists.

14
hd [1;2;3];;

1 : Int

hd [true;false;true];;

true : Bool

hd [(1,2);(3,4)];;

(1, 2) : Int * Int

import hd;;

Thus hd has several types; for example, it is used above with types (Int List) -> Int,
(Bool List) -> Bool, and (Int * Int) List -> (Int * Int). In fact if ty is any type then hd

has the type (ty List) -> ty. Functions, like hd, with many types are called polymorphic, and
ML uses type variables ’a, ’b, ’c etc. to represent their types1.

15# hd;;

- : ’a List -> ’a

map;;

- : (’a -> ’b) -> (’a List) -> ’b List

map fact [1;2;3;4];;

[1; 2; 6; 24] : Int List

import null;;

letrec fact n =

if n = 0

then 1

else n * fact(n - 1);;

letrec map f l =

if null l

then []

else f(hd l).map f (tl l);;

The ML function map takes a function f (with argument type ’a and result type ’b), and a list
l (of elements of type ’a), and returns the list obtained by applying f to each element of l (which
is a list of elements of type ’b). The function map can be used at any instance of its type: above,
both ’a and ’b were instantiated to Int; below, ’a is instantiated to (Int List) and ’b to Bool.
Notice that the instance need not be specified; it is determined by the type checker.

16
map null [[1;2]; []; [3]; []];;

[false; true; false; true] : Bool List

import null map;;

1EventML, SML and other such ML-like programming languages use ’a, ’b, ’c, etc. to represent type variables,

while Classic ML uses *, **, *** etc.

7

2.10 Lambda-expressions

The expression \x.e evaluates to a function with formal parameter x and body e. Thus the
declaration let f x = e is equivalent to let f = \x.e. Similarly let f(x,y) z = e is equivalent
to let f = \(x,y).\z.e. The character \ is our notation for a lambda. The expressions \x.e and
\(x,y).\z.e are called lambda-expressions. Lambda-expressions bind less tightly than anything
else in the language. For example, \x. (\y. y) 1 means \x. ((\y. y) 1) not (\x. (\y. y)) 1

17# plus1;;

- : Int -> Int

plus1 3;;

4 : Int

map (\x.x * x) [1;2;3;4];;

[1; 4; 9; 16] : Int List

doubleup;;

- : (’a List List) -> ’a List List

doubleup [[1]; [2;3]];;

[[1; 1]; [2; 3; 2; 3]] : Int List List

doubleup [];;

[] : ’a List List

import map;;

let plus1 = \x. x + 1;;

let doubleup = map (\x.x ++ x)

;;

2.11 Type constructors

Both List and * are examples of type constructors; List has one argument (hence ’a List)
whereas * has two (hence ’a * ’b). Each type constructor has various primitive operations asso-
ciated with it, for example List has null, hd, tl, . . . etc, and * has fst, snd.

18# z;;

(8, 30) : Int * Int

fst z;;

8 : Int

snd z;;

30 : Int

let z = (8,30);;

Another standard constructor of two arguments is +; ’a + ’b is the disjoint union of types ’a
and ’b, and associated with it are the following primitives:

isl : (’a + ’b) -> bool tests membership of left summand
inl : ’a -> (’a + ’b) injects into left summand
inr : ’a -> (’b + ’a) injects into right summand
outl : (’a + ’b) -> ’a projects out of left summand
outr : (’a + ’b) -> ’b projects out of right summand

These are illustrated by:

8

19# x;;

inl(1) : Int + ’a

y;;

inr(2) : ’a + Int

isl x;;

true : Bool

isl y;;

false : Bool

outl x;;

1 : Int

outl y;;

evaluation failed.

outr x;;

evaluation failed.

outr y;;

2 : Int

let x = inl 1;;

let y = inr 2;;

3 Syntax of ML

We shall use variables to range over the various constructs of ML as follows:

Variable Ranges over

var, id variables
con constructors
ce constant expressions
ty types
d declarations
b bindings
p patterns
e expressions

Variables and constructors are both represented by identifiers but they are different syntax
classes. Identifiers and constant expressions are described in Section 3.2 below. Types and type-
bindings are explained in Section 4. Declarations, bindings, patterns and expressions are defined
by the following BNF-like syntax equations in which:

1. Each variable ranges over constructs as above.

2. The numbers following the various variables are there merely to distinguish between different
occurrences.

9

3. {C} denotes an optional occurrence of C, and for n>1 {C1|C2...|Cn} denotes a choice of
exactly one of C1,C2,. . . ,Cn.

4. The constructs are listed in order of decreasing binding power.

5. ‘L’ or ‘R’ following a construct means that it associates to the left (L) or right (R) when
juxtaposed with itself (where this is syntactically admissible).

6. Certain constructs are equivalent to others and this is indicated by ‘equiv.’ followed by the
equivalent construct.

3.1 Syntax equations for ML

Table 1 describes ML declarations, Table 2 bindings, Table 3 patterns, and Table 4 on page 11
describes expressions.

d ::= let b ordinary variables
| letrec b recursive functions

| infix {{0|1|2|3|4|5|6|7}} id left associative infix directive
| infixr {{0|1|2|3|4|5|6|7}} id right associative infix directive

| import id1 . . . idn declaration import

Table 1: Declarations

b ::= p=e simple binding
| id p1 p2 . . . pn {:ty} = e function definition

Table 2: Bindings

p ::= () unit
| empty pattern (widcard)
| id variable
| p:ty type constraint
| (p1,p2) R pairing

| (p) equivalent to p

Table 3: Patterns

In the syntax equations constructs are listed in order of decreasing binding power. For example,
since e1e2 is listed before e1 + e2 function application binds more tightly than addition and thus
e1e2 + e3 parses as (e1e2) + e3. This convention determines only the relative binding power of
different constructs. The left or right association of a construct is indicated explicitly by ‘L’ for left
and ‘R’ for right. For example, as application associates to the left, the expression e1e2e3 parses as
(e1e2) e3.

Only functions can be defined with letrec. For example, letrec x = 2 - x would cause a
syntax error.

All the variables occurring in a pattern must be distinct. On the other hand, a pattern can
contain multiple occurrences of the unit pattern () or of the wildcard .

10

e ::= ce constant

| var variable

| e1 e2 L function application

| e:ty type constraint

| !e negation
| ∼e unary minus

| e1 * e2 L multiplication
| e1 / e2 L division
| e1 + e2 L addition
| e1 - e2 L subtraction
| e1 . e2 R list cons
| e1 ++ e2 R list append
| e1 = e2 L equality
| e1 < e2 less than
| e1 > e2 greater than
| e1 <= e2 less or equal to
| e1 >= e2 greater or equal to

| e1 & e2 R conjunction
| e1 or e2 R disjunction

| e1 user-infix e2 L user declared infix identifier

| (e1,e2) R pairing

| if e1 then e2 else e3 conditional

| [] empty list
| [e1;e2 . . . ;en] list of n elements

| e where b R equivalent to let b in e

| let d in e local declaration

| \ p.e abstraction

| (e) equivalent to e

Table 4: Expressions

11

Spaces (ASCII 32), carriage returns (ASCII 13), line feeds (ASCII 10) form feeds (^L, ASCII 12)
and tabs (^I, ASCII 9) can be inserted and deleted arbitrarily without affecting the meaning (as
long as obvious ambiguities are not introduced). For example, the space in ∼ x but not in x or y

can be omitted. Comments, which are arbitrary sequences of characters surrounded by (* and *),
can be inserted anywhere a space is allowed. Comments can be nested.

3.2 Identifiers and other lexical matters

In this section the lexical structure of ML is defined.

3.2.1 Identifiers

A variable (var) or identifier is a sequence of alphanumerics starting with a letter, where an
alphanumeric is either a letter, a digit, a prime (’), a dash (-) or an underbar (). ML is case-
sensitive: upper and lower case letters are considered to be different.

3.2.2 Constant expressions

The ML constant expressions (ce’s) used in Table 4 are:

1. Integers, i.e. sequences of digits 0,1...,9.

2. Truth values true and false.

3. Tokens and token-lists:

(a) Tokens consist of any non-empty sequence of characters surrounded by token backquotes
(‘), e.g. ‘This is a single token‘.

(b) Token-lists consist of any sequence (possible empty) of tokens (separated by spaces,
returns, line-feed or tabs) surrounded by double backquotes (‘‘). e.g.
‘‘this is a token-list containing 7 members‘‘.
The token list ‘‘ tok1 tok2 ... tokn‘‘ is equivalent to [‘tok1‘; ‘tok2‘; ...;

‘tokn‘].

4. The expression (), called unit , which evaluates to the unique object of ML type Unit.

3.2.3 Prefixes and infixes

Each infix operator has a precedence rated from 0 to 7 (a infix operator with precedence i binds
tighter than an operator with precedence j if j < i), and is either left or right associative.

The ML prefixes px and infixes ix are given by:

px ::= ! | ∼
ix ::= * | / (L, 7)

| + | - (L, 6)

| . | ++ (R, 5)

| = | < | > | <= | >= (L, 4)

| & | or (R, 0)

12

In addition, any identifier (and certain single characters) can be made into an infix.
Except for & and or, each prefix px has correlated with it a special identifier op px which

is bound to the associated function. For example, the identifier op + is bound to the addition
function, and op ++ to the list-append function. This is useful for passing functions as arguments;
for example, f(op ++) applies f to the append function.

4 ML Types

So far, little mention has been made of types. For ML in its original role as the meta-language for
proof in LCF, the importance of strict type checking was principally to ensure that every computed
value of the type representing theorems was indeed a theorem.

The same effect could probably have been achieved by run-time type checking, but compile-
time type checking was adopted instead, in the design of ML. This was partly for the considerable
debugging aid that it provides; partly for efficient execution; and partly to explore the possibility
of combining polymorphism with type checking. This last reason is of general interest in program-
ming languages and has nothing to do specifically with proof; the problem is that there are many
operations (list mapping functions, functional composition, etc.) which work at an infinity of types,
and therefore their types should somehow be parameterized – but it is rather inconvenient to have
to mention the particular type intended at each of their uses.

The ML type checking system is implemented in such a way that, although the user may
occasionally (either for documentation or as a constraint) ascribe a type to an ML expression or
pattern, it is hardly ever necessary to do so. The user of ML will almost always be content with the
types ascribed and presented by the type checker, which checks every top-level phrase before it is
evaluated. (The type checker may sometimes find a more general type assignment than expected.)

4.1 Types and objects

Every data object in ML possesses a type. Such an object may possess many types, in which case
it is said to be polymorphic and possesses a polytype – i.e. a type containing type variables (for
which we use an identifier followed by at least one quote) – and moreover it possesses all types
which are instances of its polytype, formed by substituting types for zero or more type variables
in the polytype. A type containing no type variables is a monotype.

We saw several examples of types in Section 2. To understand the following syntax, note that
List is a postfixed unary (one-argument) type constructor (thereafter abbreviated to tycon). The
user may introduce new n-argument type constructors. A binary type operator directory, for
example, can be introduced. The following type expressions will then be types of different kinds of
directory:

• (Atom, Int) directory

• (Int, Int -> Int) directory

The user may even deal with lists of directories, with the type (Int, Bool) directory List

4.1.1 The syntax of types

The syntax of ML types is summarized in Table 5. Two or more arguments must be separated by
commas and enclosed by parentheses. The type operator List is a predeclared unary type operator;
and *, + and -> may be regarded as infix forms of three predeclared binary type operators.

13

Types ty ::= sty Standard (non-infix) type
| ty * ty R Cartesian product
| ty + ty R Disjoint sum
| ty -> ty R Function type

Standard Types sty ::= Unit | Int

| Bool | Atom Basic types
| vty Type variable
| (ty)

Type arguments tyarg ::= sty Single type argument
| (ty,...,ty) One or more type arguments

Type variables vty ::= ’id

Table 5: ML Type Syntax

For an object to possess2 a type means the following: For basic types, all integers possess Int,
both booleans (true and false) possess Bool , etc. The only object possessing Unit is that denoted
by () in ML. For a type abbreviation tycon, an object possesses tycon (during execution of phrases
in the scope of the declaration of tycon) if and only if it possesses the type which tycon abbreviates.
For compound monotypes ,

1. The type ty List is possessed by any list of objects, all of which possess type ty (so that the
empty list possesses type ty List for every ty).

2. The type ty1 * ty2 is possessed by any pair of objects possessing the types ty1 and ty2,
respectively.

3. The type ty1 + ty2 is possessed by the left-injection of any object possessing ty1, and by the
right-injection of any object possessing ty2. These injections are denoted by the ML function
identifiers inl : ’a -> ’a + ’b and inr : ’b -> ’a + ’b.

4. A function possesses type ty1 -> ty2 if, whenever its argument possesses type ty1, its result
(if defined) possesses type ty2. (This is not an exact description; for example, a function
defined in ML with non-local variables may possess this type even though some assumption
about the types of the values of these non-local variables is necessary for the above condition
to hold. The constraints on programs listed below ensure that the non-locals will always have
the right types).

Finally, an object possesses a polytype ty if and only if it possesses all monotypes which are
substitution instances of ty.

4.2 Typing of ML phrases

We now explain the constraints used by the type checker in ascribing types to ML expressions,
patterns and declarations.

The significance of expression e having type ty is that the value of e (if evaluation terminates
successfully) possesses type ty. As consequences of the well-typing constraints listed below, it
is impossible for example to apply a non-function to an argument, or to form a list of objects

2We shall talk of objects possessing types and phrases having types, to emphasize the distinction.

14

of different types, or (as mentioned earlier) to compute an object of the type corresponding to
theorems which is not a theorem.

The type ascribed to a phrase depends in general on the entire surrounding ML program. In
the case of top-level expressions and declarations, however, the type ascribed depends only on
preceding top-level phrases. Thus you know that types ascribed at top-level are not subject to
further constraint.

Before each top-level phrase is executed, types are ascribed to all its sub-expressions, sub-
declarations and sub-patterns according to the following rules. Most of the rules are fairly natural;
those which are less so are discussed later. You are only presented with the types of top-level
phrases; the types of sub-phrases will hardly ever concern you.

Before giving the list of constraints, let us discuss an example which illustrates some important
points. To map a function over a list we may define the polymorphic function map recursively as
follows (where we have used an explicit abstraction, rather than letrec map f l = ..., to make
the typing clearer):

letrec map = \f.\l. null l => [] | f(hd l).map f(tl l) ;;

From this declaration the type checker will infer a generic type for map. By ‘generic’ we mean that
each later occurrence of map will be ascribed a type which is a substitution instance of the generic
type.

Now the free identifiers in this declaration are null, hd, tl and op ., which are ML primi-
tives whose generic (poly)types are ’a List -> Bool, ’a List -> ’a, ’a List -> ’a List, and
’a * ’a List -> ’a List respectively. The first constraint used by the type checker is that the
occurrences of these identifiers in the declaration are ascribed instances of their generic types. Other
constraints which the type checker will use to determine the type of map are:

• All occurrences of a lambda-bound variable receive the same type.

• Each arm of a conditional receives the same type, and the condition receives type Bool.

• In each application e = (e1e2), if e2 receives ty and e receives ty′ then e1 receives ty -> ty′.

• In each abstraction e = \v.e1, if v receives ty and e1 receives ty′ then e receives ty -> ty′.

• In a letrec declaration, all free occurrences of the declared variable receive the same type.

Now the type checker will ascribe the type (’a -> ’b) -> ’a List -> ’b List to map. This
is in fact the most general type consistent with the constraints mentioned. Moreover, it can be
shown that any instance of this type also allows the constraints to be satisfied; this is what allows
us to claim that the declaration is indeed polymorphic.

In the following constraint list, we say p has ty to indicate that the phrase p is ascribed a type ty
which satisfies the stated conditions. We use x, p, e, d to stand for variables, patterns, expressions
and declarations respectively.

Constants:

1. () has type Unit

2. 0 has type Int , 1 has type Int, ...

3. true has type Bool, false has type Bool

4. ‘...‘ has type Atom

15

Variables and constructors: The constraints described here are discussed in Section 4.3 below.

1. If x is a variable bound by \ or letref, then x is ascribed the same type as its binding
occurrence.

2. If x is bound by let or letrec, then x has ty, where ty is an instance of the type of the
binding occurrence of x (i.e. the generic type of x), in which type variables occurring in
the types of current lambda-bound are not instantiated.

3. If x is not bound in the program (in which case it must be an ML primitive), then x

has ty, where ty is an instance of the type of x has defined in the built-in library or in
the library file.

Patterns: Cases for a pattern p:

• (): p has Unit.

• : p has ty, where ty is any type.

• p1:ty:
p1 and p have an instance of ty.

• (p1,p2): If p1 has ty1 and p2 has ty2, then p has ty1 * ty2.

Expressions: Cases for an expression e (not a constant or identifier):

• e1e2: If e2 has ty and e has ty′ then e1 has ty -> ty′.

• e1:ty: e1 and e have an instance of ty.

• px e1: Treated as (op px)e1 when px is a prefix. If e is ∼ e1, then e and e1 have Int.

• e1 ix e2: Treated as (op ix)e1e2. If e is (e1 & e2) or (e1 or e2) then e, e1 and e2
have Bool.

• (e1,e2): If e1 has ty1 and e2 has ty2 then e has ty1 * ty2.

• if e1 then e2 else e3: Each e1 has Bool, and e2 and e3 have ty for some ty.

• [e1;...;en]: For some ty, each ei has ty and e has ty List.

• let d in e1: If e1 has ty then e has ty.

• \p.e1: If p has ty and e1 has ty′ then e has ty ->ty′.

Declarations:

1. Each binding x p1 . . . pn = e is treated as x = \p1. ...\pn.e.

2. If d is let p=e, then d, p and e all have ty for some ty.Note that e is not in the scope
of the declaration.

3. If d is letrec (x1,...,xn) = (e1,...,en), then, for each i ∈ {1, . . . , n}, xi and ei
have tyi, and d has ty1 * ... * tyn for some tyi. In addition, each free occurrence of xi
in e1,. . . ,en has tyi, so that the type of recursive calls of xi is the same as the declaring
type.

16

4.3 Discussion of type constraints

We give here reasons for our constraints on the types ascribed to occurrences of identifiers. The
reader may like to skip this section at first reading.

Consider constraint (1) for lambda-bound identifiers. This constraint implies that the expression
let x = e in e′ may be well-typed even if the semantically-equivalent (dynamic semantics and
not static semantics) expression let f x = e′ in f e is not, since in the former expression x may
occur in e′ with two incompatible types which are both instances of the declaring type. The greater
constraint on f is associated with the fact that f may be applied to many different arguments during
evaluation. To show the need for the constraint, suppose that it is replaced by the weaker constraint
for let-bound identifiers, so that for example let f x = if x then 1 + x else x(1) is a well-
typed declaration of type ’a -> Int, in which the occurrences of x receive types ’a, Bool, Int,
Int -> Int respectively. In the absence of an explicit argument for the abstraction, no constraint
exists for the type of the binding occurrence of x. But, because f is let-bound, expressions such
as f true and f ‘dog‘ are admissible in the scope of f, although their evaluation should result in
either nonsense or run-time type-errors; one of the our purposes is to preclude these.

Note that expressions of the form (\x.e′)e, could be treated exactly as let x=e in e′ because
we know the unique instance of type of the argument x, namely the type of e.

References

[ABC+06] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz,
Lori Lorigo, and E. Moran. Innovations in computational type theory using nuprl. J.
Applied Logic, 4(4):428–469, 2006.

[BC04] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Develop-
ment. SpringerVerlag, 2004.

[BC08] Mark Bickford and Robert L. Constable. Formal foundations of computer security.
In NATO Science for Peace and Security Series, D: Information and Communication
Security, volume 14, pages 29–52. 2008.

[BCG11] Mark Bickford, Robert Constable, and David Guaspari. Generating event logics with
higher-order processes as realizers. Technical report, Cornell University, 2011.

[BCH+00] Ken Birman, Robert Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Rob-
bert van Renesse, Ohad Rodeh, and Werner Vogels. The Horus and Ensemble projects:
Accomplishments and limitations. In In DARPA Information Survivability Conference
and Exposition (DISCEX 2000), pages 149–160. IEEE Computer Society Press, 2000.

[Bic09] Mark Bickford. Component specification using event classes. In Grace A. Lewis, Iman
Poernomo, and Christine Hofmeister, editors, CBSE, volume 5582 of Lecture Notes in
Computer Science, pages 140–155. Springer, 2009.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki,
and S. F. Smith. Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

17

[CH90] G. Cousineau and Gérard Huet. The CAML primer. Technical Report RT-0122, INRIA,
September 1990.

[CHP84] Guy Cousineau, Gérard Huet, and Larry Paulson. The ML handbook, 1984.

[GM93] Michael Gordon and T. Melham. Introduction to HOL: a theorem proving environment
for higher-order logic. Cambridge University Press, 1993.

[GMW79] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation., volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[Hay98] Mark Hayden. The Ensemble System. PhD thesis, Cornell University, Department of
Computer Science, 1998. Technical Report TR98-1662.

[Kre02] Christoph Kreitz. The Nuprl Proof Development System, Version 5, Ref-
erence Manual and User’s Guide. Cornell University, Ithaca, NY, 2002.
http://www.nuprl.org/html/02cucs-NuprlManual.pdf.

[Ler00] Xavier Leroy. The Objective Caml system release 3.00. Institut National de Recherche
en Informatique et en Automatique, 2000.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1990.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Definition of
Standard ML (Revised). MIT Press, Cambridge, MA, USA, 1997.

[Pau87] Lawrence C. Paulson. Logic and computation: interactive proof with Cambridge LCF.
Cambridge University Press, New York, NY, USA, 1987.

[Pau90] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In Piergiorgio Odifreddi,
editor, Logic and Computer Science, pages 361–386, 1990.

[SGC07] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F# (Expert’s Voice in
.Net). Apress, 2007.

[WAL+90] Pierre Weis, Maria-Virginia Aponte, Alain Laville, Michel Mauny, and Acsander
Suarez. The CAML reference manual, September 1990.

18

http://www.nuprl.org/html/02cucs-NuprlManual.pdf

	The History of ML
	Preface to `The ML Handbook'
	Preface to `Edinburgh LCF'

	Introduction and Examples
	Classic ML versus EventML
	Sessions
	Expressions
	Declarations
	Functions
	Recursion
	Lists
	Atom
	Polymorphism
	Lambda-expressions
	Type constructors

	Syntax of ML
	Syntax equations for ML
	Identifiers and other lexical matters
	Identifiers
	Constant expressions
	Prefixes and infixes

	ML Types
	Types and objects
	The syntax of types

	Typing of ML phrases
	Discussion of type constraints

