Nuprl Definition : bilinear_p
(basic)::
IsBilinear(A;B;C;+a;+b;+c;f) ==
(∀[a1,a2:A]. ∀[b:B]. (((a1 +a a2) f b) = ((a1 f b) +c (a2 f b)) ∈ C))
∧ (∀[a:A]. ∀[b1,b2:B]. ((a f (b1 +b b2)) = ((a f b1) +c (a f b2)) ∈ C))
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
and: P ∧ Q
,
equal: s = t ∈ T
Definitions occuring in definition :
and: P ∧ Q
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
,
infix_ap: x f y
Latex:
(basic)::
IsBilinear(A;B;C;+a;+b;+c;f) ==
(\mforall{}[a1,a2:A]. \mforall{}[b:B]. (((a1 +a a2) f b) = ((a1 f b) +c (a2 f b))))
\mwedge{} (\mforall{}[a:A]. \mforall{}[b1,b2:B]. ((a f (b1 +b b2)) = ((a f b1) +c (a f b2))))
Date html generated:
2016_05_15-PM-00_02_26
Last ObjectModification:
2015_09_23-AM-06_23_46
Theory : gen_algebra_1
Home
Index